《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 4-Informed search algorithms

Informed search algorithms Chapter 4
Informed search algorithms Chapter 4

Material ·Chapter4 Section1-3 ● 。 Exclude memory-bounded heuristic search
Material • Chapter 4 Section 1 - 3 • • Exclude memory-bounded heuristic search •

Outline ·Best--first search Greedy best-first search ·A search ·Heuristics Local search algorithms ·Hil-climbing search Simulated annealing search ·Local beam search ·Genetic algorithms
Outline • Best-first search • Greedy best-first search • A* search • Heuristics • Local search algorithms • Hill-climbing search • Simulated annealing search • Local beam search • Genetic algorithms

Review:Tree search \input{\filefalgorithmsHtree-search-short- algorithm ● A search strategy is defined by picking the order of node expansion
Review: Tree search • \input{\file{algorithms}{tree-search-shortalgorithm}} • • A search strategy is defined by picking the order of node expansion •

Best-first search Idea:use an evaluation function f(n)for each node estimate of"desirability" >Expand most desirable unexpanded node → ·Implementation: Order the nodes in fringe in decreasing order of desirability ·Special cases: greedy best-first search A search
Best-first search • Idea: use an evaluation function f(n) for each node – estimate of "desirability" – →Expand most desirable unexpanded node → • Implementation: Order the nodes in fringe in decreasing order of desirability • Special cases: – greedy best-first search – A* search –

Romania with step costs in km Straight-line distance ▣Q3dea 71 b Bucharest Neamt Arad 366 75户zerm 87 Bucharest 0 151 Craiova 160 Dobreta 242 Ar3d白 140 Eforie 161 92 Siblu Fagaras 176 9 Fagaras 11日 ▣ Giurgiu 7 ▣ 80 口Vaslul Hirsova 151 Iasi 226 白Timisoa3 Rimnu Vikea Lugoj 244 142 Mehadia 241 1T 211 Neamt 234 ▣Lugj Pitestl Oradea 390 7d 98 Pitesti 10 146 ▣ehadia 10T 85 ▣Hirsova Urzicenl Rimnicu Vikea 193 75 86 Sibiu 139 253 Bucharest Timisoara 329 Dob reta白 120 90 ▣ Urziceni 830 口Cralov3 Efor le Vaslui 199 Glurglu Zerind 374
Romania with step costs in km

Greedy best-first search Evaluation function f(n)=h(n)(heuristic) estimate of cost from n to goal ● .e.g.,hsLo(n)=straight-line distance from n to Bucharest ● Greedy best-first search expands the node that appears to be closest to goal
Greedy best-first search • Evaluation function f(n) = h(n) (heuristic) • = estimate of cost from n to goal • • e.g., hSLD(n) = straight-line distance from n to Bucharest • • Greedy best-first search expands the node that appears to be closest to goal •

Greedy best-first search example
Greedy best-first search example

Greedy best-first search example Sbiu Timisoala Zerind 253 32 374
Greedy best-first search example

Greedy best-first search example Sbu○ Timisoara Zatind 329 374 Oradea Hrria Vicea 336 78 380 193
Greedy best-first search example
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 3-Solving problems by searching.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 2-Intelligent Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 18-Learning from Observations.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 14-Bayesian networks.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 13-Uncertainty.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 1-Introduction.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 5-Constraint Satisfaction Problems.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 6-Adversarial Search.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 7-Logical Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 8-First-Order Logic.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 9-Inference in first-order logic.ppt
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 02 Intelligent Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 03 Solving Problems by Searching.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 04 Informed Search.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 05 Constraint Satisfaction Problems.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 06 Game Playing.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 07 Logical Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 10 Uncertainty and Bayesian Networks.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 11 马尔可夫决策过程.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 08 First-Order Logic and Inference in FOL.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 09 AI Planning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 13 神经网络与深度学习.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 14 Reinforcement Learning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 15 智能机器人系统介绍.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 01 Introdution(主讲:吉建民).pdf
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Course Overview(主讲:闫宏飞).ppt