同济大学:《线性代数》课程教学资源(课件讲稿)Matrices

Matrices Li Zhang Department of Mathematics Tongji University 4907 Tongji University】 1/14
. . Matrices Li Zhang Department of Mathematics Tongji University (Tongji University) Linear Algebra 1 / 14

Matrix Definition 7.0.1 a11 aml amn Note:m x n matrix,square matrix,entry,order,main diagonal,row matrix, column matrix The negative of a matrix is the matrix whose entries are the negatives of the original matrix. A zero matrix is one of any size all of whose entries are 0. Tongji University】 2/14
Matrix . Definition 7.0.1 . . a11 . . . a1n . . . . . . am1 . . . amn Note: m × n matrix, square matrix, entry, order, main diagonal, row matrix, column matrix The negative of a matrix is the matrix whose entries are the negatives of the original matrix. A zero matrix is one of any size all of whose entries are 0. (Tongji University) Linear Algebra 2 / 14

Matrix Definition 7.0.1 a11 aml amn Note:m x n matrix,square matrix,entry,order,main diagonal,row matrix, column matrix The negative of a matrix is the matrix whose entries are the negatives of the original matrix. A zero matrix is one of any size all of whose entries are 0. Tongji University】 2/14
Matrix . Definition 7.0.1 . . a11 . . . a1n . . . . . . am1 . . . amn Note: m × n matrix, square matrix, entry, order, main diagonal, row matrix, column matrix The negative of a matrix is the matrix whose entries are the negatives of the original matrix. A zero matrix is one of any size all of whose entries are 0. (Tongji University) Linear Algebra 2 / 14

Matrix addition Definition 7.1.1 (Matrix addition) a11...a1n b11..b1n a11+b11.a1n+b1n 十 .. = am1...amn bm1...bmn aml bmi...amn bmn 04十B=B十 ©H+B)+C=过+(B+C 0A+B一C=4-C+B 04十B=C+D=4+B-C=D Tongji University】 3/14
Matrix addition . Definition 7.1.1 (Matrix addition) . . a11 . . . a1n . . . . . . am1 . . . amn + b11 . . . b1n . . . . . . bm1 . . . bmn := a11 + b11 . . . a1n + b1n . . . . . . am1 + bm1 . . . amn + bmn .1 A + B = B + A. .2 (A + B) + C = A + (B + C) 3. A + B − C = A − C + B .4 A + B = C + D ⇒ A + B − C = D (Tongji University) Linear Algebra 3 / 14

Matrix addition Definition 7.1.1 (Matrix addition) a11...a1n b11..b1n a11+b11.a1n+b1n 十 三 am1...amn bm1...bmn aml十bml..amm+bmm OA+B=B+A. ⊙(A+B)+C=A+(B+C) A+B-C=A-C+B OA+B=C+D→A+B-C=D Tongji University】 3/14
Matrix addition . Definition 7.1.1 (Matrix addition) . . a11 . . . a1n . . . . . . am1 . . . amn + b11 . . . b1n . . . . . . bm1 . . . bmn := a11 + b11 . . . a1n + b1n . . . . . . am1 + bm1 . . . amn + bmn .1 A + B = B + A. .2 (A + B) + C = A + (B + C) 3. A + B − C = A − C + B .4 A + B = C + D ⇒ A + B − C = D (Tongji University) Linear Algebra 3 / 14

Matrix addition Definition 7.1.1 (Matrix addition) a11...a1n b11..b1n a11+b11.a1n+b1n 十 三 am1...amn bm1...bmn aml十bml..amm+bmm OA+B=B+A. ⊙(A+B)+C=A+(B+C) A+B-C=A-C+B OA+B=C+D→A+B-C=D Tongji University】 3/14
Matrix addition . Definition 7.1.1 (Matrix addition) . . a11 . . . a1n . . . . . . am1 . . . amn + b11 . . . b1n . . . . . . bm1 . . . bmn := a11 + b11 . . . a1n + b1n . . . . . . am1 + bm1 . . . amn + bmn .1 A + B = B + A. .2 (A + B) + C = A + (B + C) 3. A + B − C = A − C + B .4 A + B = C + D ⇒ A + B − C = D (Tongji University) Linear Algebra 3 / 14

scalar multiplication The word"scalar"just means"number"-we use a separate word to distinguish numbers from other mathematical objects we want to calculate with,like matrices. Definition 7.1.2 (scalar multiplication) To multiply a matrix by a scalar,multiply every entry of the matrix by that scalar. a11 入a11 Xain ·.. aml amn 入aml 入amn 0A04)=A4 0十)4=人4+ OA4+B=入H+AB Tongji University】 4114
scalar multiplication . The word ”scalar” just means ”number” – we use a separate word to distinguish numbers from other mathematical objects we want to calculate with, like matrices. . Definition 7.1.2 (scalar multiplication) . . To multiply a matrix by a scalar, multiply every entry of the matrix by that scalar. λ a11 . . . a1n . . . . . . am1 . . . amn := λa11 . . . λa1n . . . . . . λam1 . . . λamn .1 λ(µA) = (λµ)A .2 (λ + µ)A = λA + µA 3. λ(A + B) = λA + λB (Tongji University) Linear Algebra 4 / 14

scalar multiplication The word"scalar"just means"number"-we use a separate word to distinguish numbers from other mathematical objects we want to calculate with,like matrices. Definition 7.1.2 (scalar multiplication) To multiply a matrix by a scalar,multiply every entry of the matrix by that scalar. a11 入a11 Xain aml .。amn 入am1l 入amn Oλ(4)=(4)4 ⊙(A+4)A=入M+4 OX(A+B)=入A+入B Tongji University】 4/14
scalar multiplication . The word ”scalar” just means ”number” – we use a separate word to distinguish numbers from other mathematical objects we want to calculate with, like matrices. . Definition 7.1.2 (scalar multiplication) . . To multiply a matrix by a scalar, multiply every entry of the matrix by that scalar. λ a11 . . . a1n . . . . . . am1 . . . amn := λa11 . . . λa1n . . . . . . λam1 . . . λamn .1 λ(µA) = (λµ)A .2 (λ + µ)A = λA + µA 3. λ(A + B) = λA + λB (Tongji University) Linear Algebra 4 / 14

scalar multiplication The word"scalar"just means"number"-we use a separate word to distinguish numbers from other mathematical objects we want to calculate with,like matrices. Definition 7.1.2 (scalar multiplication) To multiply a matrix by a scalar,multiply every entry of the matrix by that scalar. a11 入a11 Xain aml .。amn 入am1l 入amn Oλ(4)=(4)4 ⊙(A+4)A=入M+4 OX(A+B)=入A+入B Tongji University】 4/14
scalar multiplication . The word ”scalar” just means ”number” – we use a separate word to distinguish numbers from other mathematical objects we want to calculate with, like matrices. . Definition 7.1.2 (scalar multiplication) . . To multiply a matrix by a scalar, multiply every entry of the matrix by that scalar. λ a11 . . . a1n . . . . . . am1 . . . amn := λa11 . . . λa1n . . . . . . λam1 . . . λamn .1 λ(µA) = (λµ)A .2 (λ + µ)A = λA + µA 3. λ(A + B) = λA + λB (Tongji University) Linear Algebra 4 / 14

Matrix multiplication Definition 7.1.3(Matrix multiplication) Let A=(ay)mxs and B=(bi)sxn.Then AB=(cy)mxn.where cg=a1b1y+…十asbg=k=1 aikbij,(=1,…,m;j=1,…,n) Special Cases IAmxnOnxs=Omx Osxm4mx=0xxn 24m×:= m行= Proof:Let C=AE.then we have Tongji University】 5/14
Matrix multiplication . Definition 7.1.3 (Matrix multiplication) . . Let A = (aij)m×s and B = (bij)s×n . Then AB = (cij)m×n, where cij = ai1b1j + · · · + aisbsj = ∑s k=1 aikbkj , (i = 1, · · · , m; j = 1, · · · , n) . Special Cases . . 1. Am×nOn×s = Om×s , Os×mAm×n = Os×n 2. Am×nEn = A; EmAm×n = A. Proof: Let C = AE, then we have: cij = ∑n k=1 aikδkj = aijδjj = aij. (Tongji University) Linear Algebra 5 / 14
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《线性代数》课程教学资源(课件讲稿)Linear System.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)Linear Algebra—Determinants.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)线性代数习题课(负责人:张莉).pdf
- 同济大学:《线性代数》课程教学资源(试卷习题)2008-2009学年第一学期(B卷).pdf
- 同济大学:《线性代数》课程教学资源(试卷习题)2006-2007学年第二学期B卷(含答案).pdf
- 《线性代数》课程教学资源(文献资料)主元分析(PCA)理论分析及应用.pdf
- 《线性代数》课程教学资源(文献资料)数据降维方法综述(清华大学:马小龙).pdf
- 《线性代数》课程教学资源(文献资料)THE $25,000,000,000 EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE.pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)惩罚函数法.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)最优性条件.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)使用导数的最优化方法(无约束优化方法).ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)整数(线性)规划.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)对偶理论及灵敏度分析.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)单纯形方法.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)一维搜索.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)Determinants.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)Abstract Vector Spaces.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)Spanning Sets and Independent Sets.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)课程简介、第一章 行列式.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)第二章 . 矩阵及其运算.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)第三章 . 矩阵的初等变换与线性方程组.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)第四章 向量组的线性相关性.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)第五章 特征值与特征向量.pdf
- 同济大学:《线性代数》课程教学资源(课件讲稿)第六章 . 线性空间与线性变换.pdf
- 吉林大学:《高等数学》课程教学资源(试卷习题)考试样卷一(试卷).doc
- 吉林大学:《高等数学》课程教学资源(试卷习题)考试样卷一(答案).doc
- 吉林大学:《高等数学》课程教学资源(试卷习题)考试样卷二(试卷).doc
- 吉林大学:《高等数学》课程教学资源(试卷习题)考试样卷二(答案).doc
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续(习题课).ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §10 闭区间上连续函数的性质.ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §1 函数.ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §2 数列的极限.ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §3 函数的极限.ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §4 无穷大与无穷小.ppt
- 吉林大学:《高等数学》课程电子教案(PPT课件)第一章 函数、极限、连续 §5 极限运算法则.ppt