电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab

Matrix Theory -Special Matrices School of Mathematical Sciences Teaching Group Main Reference books Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares.SIAM.2009. Reference books: Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition.Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition. SIAM Philadelphia2003. Maintained by Yan-Fei Jing
: Main Reference books ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Special Matrices School of Mathematical Sciences Teaching Group Matrix Theory Special Matrices

Hilbert Matrix Outline Hilbert Matrix Circulant Matrix Toeplitz Matrix Hankel Matrix Vandermonde Matrix Summary Questions Extensive reading 奇老有这女习 Matrix Theory Matrices -2/29
Hilbert Matrix Outline Hilbert Matrix Circulant Matrix Toeplitz Matrix Hankel Matrix Vandermonde Matrix Summary & Questions Extensive reading Matrix Theory Matrices - 2/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position(i,j)is l≤i,j≤n,is called a Hilbert matrix. 命电有这女 Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position(i,j)is l≤i,j≤n,is called a Hilbert matrix. Write down a Hilbert matrix for n=5. 奇电有这头 Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i,j)is l≤i,j≤n,is called a Hilbert matrix. Write down a Hilbert matrix for n=5. MATLAB command:hilb 奇电有这头 Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position(i,j)is l≤i,j≤n,is called a Hilbert matrix. Write down a Hilbert matrix for n=5. MATLAB command:hilb hb(n)is thenxn(nsquare)matrix with elements which is a famous example of a badly conditioned matrix.See INVHILB for the exact inverse. 命电有这女 Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position(i,j)is l≤i,j≤n,is called a Hilbert matrix. Write down a Hilbert matrix for n=5. MATLAB command:hilb hb(n)is thenxn(nsquare)matrix with elements which is a famous example of a badly conditioned matrix.See INVHILB for the exact inverse. the exact inverse:invhilb(n)is the inverse of the n-square matrix with elements-1. 务老这头 Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position(i,j)is l≤i,j≤n,is called a Hilbert matrix. Write down a Hilbert matrix for n=5. MATLAB command:hilb hb(n)is thenxn(nsquare)matrix with elements which is a famous example of a badly conditioned matrix.See INVHILB for the exact inverse. the exact inverse:invhilb(n)is the inverse of the n-square matrix with elementsj. The result is exact for n less than about 15. Matrix Theory Matrices -3/29
Hilbert Matrix Hilbert Matrix A square matrix of order n whose element in position (i, j) is 1 i+j−1 , 1 ≤ i, j ≤ n, is called a Hilbert matrix. Write down a Hilbert matrix for n = 5. MATLAB command: hilb ▸ hilb(n) is the n × n (n-square) matrix with elements 1 i+j−1 , which is a famous example of a badly conditioned matrix. See INVHILB for the exact inverse. ▸ the exact inverse: invhilb(n) is the inverse of the n-square matrix with elements 1 i+j−1 . ▸ The result is exact for n less than about 15. Matrix Theory Matrices - 3/29

Circulant Matrix Outline Hilbert Matrix Circulant Matrix Toeplitz Matrix Hankel Matrix Vandermonde Matrix Summary Questions Extensive reading 色老有这女子 Matrix Theory Matrices -4/29
Circulant Matrix Outline Hilbert Matrix Circulant Matrix Toeplitz Matrix Hankel Matrix Vandermonde Matrix Summary & Questions Extensive reading Matrix Theory Matrices - 4/29

Circulant Matrix Circulant Matrix A circulant matrix is a square matrix generated from a vector as the first row (or column), successive rows use the same elements as the first row,but each such row is circularly shifted by one element. 命电有这女子 Matrix Theory Matrices -5/29
Circulant Matrix Circulant Matrix A circulant matrix is ▸ a square matrix generated from a vector as the first row (or column), ▸ successive rows use the same elements as the first row, but each such row is circularly shifted by one element. Matrix Theory Matrices - 5/29
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.4 Laplace变换应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 13 群伦导引.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 14 子群及其陪集.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 15 循环群与群同构.pptx