电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices

Matrix Theory -Special Matrices Again School of Mathematical Sciences Teaching Group Main Reference books Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares. SlAM,2009. Reference books: Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition. Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition.SIAM, Philadelphia,2003. Matrix Theory Special Matrices Again Maintained by Yan-Fei Jing
: Main Reference books ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Special Matrices Again School of Mathematical Sciences Teaching Group Matrix Theory Special Matrices Again

Unitary and Orthogonal Matrices Outline Unitary and Orthogonal Matrices Application 1:Givens rotation Application 2:Permutation matrix Discovery Journey References 奇电有头子 Matrix Theory Special Matrices -2/23
Unitary and Orthogonal Matrices Outline Unitary and Orthogonal Matrices Application 1: Givens rotation Application 2: Permutation matrix Discovery Journey References Matrix Theory Special Matrices - 2/23

Unitary and Orthogonal Matrices Definitions 奇电有头 Matrix Theory S Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AA H = A HA = I. ▸ orthogonal if AA T = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix A Cnxn is 奇电有这头子 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AA H = A HA = I. ▸ orthogonal if AA T = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix A Cnxn is ·unitary if AAH=AHA=1. 命电有这女子 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AA T = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix Ae Cnxn is ·unitary if AAH=AHA=1. orthogonal if AA=AA=I. 命电有这女 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AAT = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix Ae Cnxn is unitary if AAH=AHA=1. orthogonal if AA=AA=1. Remarks: 奇电有这头 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AAT = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix Ae Cnxn is unitary if AAH=AHA=1. orthogonal if AA=AA=1. Remarks: A unitary matrix:columns (or rows)constitute an orthonormal basis for C. 奇电有头 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AAT = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix Ae Cnxn is unitary if AAH=AHA=1. ·orthogonal if AA=AA=1. Remarks: A unitary matrix:columns (or rows)constitute an orthonormal basis for C. A orthogonal matrix:columns (or rows)constitute an orthonormal basis for R. 命电有这女子 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AAT = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23

Unitary and Orthogonal Matrices Definitions A matrix Ae Cnxn is unitary if AAH=AHA=1. ·orthogonal if AA=AA=1. Remarks: A unitary matrix:columns (or rows)constitute an orthonormal basis for C. A orthogonal matrix:columns (or rows)constitute an orthonormal basis for R. The identity matrix is orthogonal as well as unitary. 务这头子 Matrix Theory Special Matrices -3/23
Unitary and Orthogonal Matrices Definitions A matrix A ∈ C n×n is ▸ unitary if AAH = A HA = I. ▸ orthogonal if AAT = A T A = I. Remarks: ▸ A unitary matrix: columns (or rows) constitute an orthonormal basis for C n . ▸ A orthogonal matrix: columns (or rows) constitute an orthonormal basis for R n . ▸ The identity matrix is orthogonal as well as unitary. Matrix Theory Special Matrices - 3/23
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(1/2).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 13 群伦导引.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 14 子群及其陪集.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 15 循环群与群同构.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 16 代数格.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 17 布尔代数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 18 图论基本概念.pptx