电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices

Matrix Theory -Special Matrices School of Mathematical Sciences Teaching Group Main Reference books Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares. SlAM,2009. Reference books: Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition. Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition.SIAM, Philadelphia,2003. Matrix Theory Special Matrices Maintained by Yan-Fei Jing
: Main Reference books ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Special Matrices School of Mathematical Sciences Teaching Group Matrix Theory Special Matrices

Some special types of matrix Outline Some special types of matrix Some special matrices 奇电有头子 Matrix Theory Matrices -2/14
Some special types of matrix Outline Some special types of matrix Some special matrices Matrix Theory Matrices - 2/14

Some special types of matrix Some special types of matrix 命电有这女子 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix Some special types of matrix zero matrix:a matrix,every element of which is zero. 命电有这女子 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix Some special types of matrix zero matrix:a matrix,every element of which is zero. Note:Zero matrices of different orders are different. 命电有这女子 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix Some special types of matrix zero matrix:a matrix,every element of which is zero. Note:Zero matrices of different orders are different. square matrix:as the name suggests,has the same number of rows as columns. 奇老这头子 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix Some special types of matrix zero matrix:a matrix,every element of which is zero. Note:Zero matrices of different orders are different. square matrix:as the name suggests,has the same number of rows as columns. row matrix (or vector):a 1 x m matrix,i.e.,ye Clxm. (10-12) 命电有这女子 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix Some special types of matrix zero matrix:a matrix,every element of which is zero. Note:Zero matrices of different orders are different. square matrix:as the name suggests,has the same number of rows as columns. row matrix(or vector)):小a1×m matrix,i.e,y∈Clxm. (10-12) column matrix (or vector):an nx 1 matrix,i.e.,x eCnx1 or shorter,xeC. 6 4 3 命电有这女 Matrix Theory Matrices -3/14
Some special types of matrix Some special types of matrix ▸ zero matrix: a matrix, every element of which is zero. Note: Zero matrices of different orders are different. ▸ square matrix: as the name suggests, has the same number of rows as columns. ▸ row matrix (or vector): a 1 × m matrix, i.e., y ∈ C 1×m. ( 1 0 −1 2 ) ▸ column matrix (or vector): an n × 1 matrix, i.e., x ∈ C n×1 or shorter, x ∈ C n . ⎛ ⎜ ⎝ 6 4 3 ⎞ ⎟ ⎠ Matrix Theory Matrices - 3/14

Some special types of matrix diagonal matrix:a square matrix with zeros everywhere except possibly on the diagonal which runs from the top left to the bottom right.This diagonal is called the leading diagonal. 命电有这女子 Matrix Theory Matrices -4/14
Some special types of matrix ▸ diagonal matrix: a square matrix with zeros everywhere except possibly on the diagonal which runs from the top left to the bottom right. This diagonal is called the leading diagonal. Here are some diagonal matrices: E = ( 2 0 0 −5 ) F = ⎛ ⎜ ⎝ 1 0 0 0 2 0 0 0 3 ⎞ ⎟ ⎠ G = ⎛ ⎜ ⎝ 1 0 0 0 0 0 0 0 1 ⎞ ⎟ ⎠ Note: Whereas all the non-diagonal elements are zero, the elements on the leading diagonal can be any number including zero. Matrix Theory Matrices - 4/14

Some special types of matrix diagonal matrix:a square matrix with zeros everywhere except possibly on the diagonal which runs from the top left to the bottom right.This diagonal is called the leading diagonal. Here are some diagonal matrices: 1 00 0 00 001 奇老有这头 Matrix Theory Matrices -4/14
Some special types of matrix ▸ diagonal matrix: a square matrix with zeros everywhere except possibly on the diagonal which runs from the top left to the bottom right. This diagonal is called the leading diagonal. Here are some diagonal matrices: E = ( 2 0 0 −5 ) F = ⎛ ⎜ ⎝ 1 0 0 0 2 0 0 0 3 ⎞ ⎟ ⎠ G = ⎛ ⎜ ⎝ 1 0 0 0 0 0 0 0 1 ⎞ ⎟ ⎠ Note: Whereas all the non-diagonal elements are zero, the elements on the leading diagonal can be any number including zero. Matrix Theory Matrices - 4/14
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.4 Laplace变换应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.3 Laplace变换.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.2 Fourier变换应用(3/3).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 13 群伦导引.pptx