电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related

Matrix Theory 净6 -Matrix Transposition and Related School of Mathematical Sciences Teaching Group Main Reference books Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares. SlAM,2009. Reference books: Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition. Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition.SIAM, Philadelphia,2003. Matrix Theory Matrix Transposition and Related Maintained by Yan-Fei Jing
: Main Reference books ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Matrix Transposition and Related School of Mathematical Sciences Teaching Group Matrix Theory Matrix Transposition and Related

Transpose and Conjugate Transpose Outline Transpose and Conjugate Transpose Inner and Outer Products,Again Symmetric and Hermitian Matrices Exercises 色老这子 Matrix Theory Matrix Transposition and Related .2/30
Transpose and Conjugate Transpose Outline Transpose and Conjugate Transpose Inner and Outer Products, Again Symmetric and Hermitian Matrices Exercises Matrix Theory Matrix Transposition and Related - 2/30

Transpose and Conjugate Transpose Transpose 奇老有头子 Matrix Theory Matrix Transposition and Related -3/30
Transpose and Conjugate Transpose Transpose Matrix Theory Matrix Transposition and Related - 3/30

Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa 奇老有头子 Matrix Theory Matrix Transposition and Related -3/30
Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa. Matrix Theory Matrix Transposition and Related - 3/30

Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa. If a11 a12 a1n A= a21 a22 a2n aml am2 amn 色电这女子 Matrix Theory Matrix Transposition and Related -3/30
Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa. If A = ⎛ ⎜ ⎜ ⎜ ⎝ a11 a12 . . . a1n a21 a22 . . . a2n ⋮ ⋮ ⋮ am1 am2 . . . amn ⎞ ⎟ ⎟ ⎟ ⎠ , Matrix Theory Matrix Transposition and Related - 3/30

Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa. If a11 a12 a1n A= a21 a22 a2n aml am2 amn Then its transpose AT eCnxm is obtained by converting rows to columns, a11 a21 aml AT a12 322 am2 a1n a2n amn 色电这女子 Matrix Theory Matrix Transposition and Related .3/30
Transpose and Conjugate Transpose Transpose Transposing a matrix amounts to turning rows into columns and vice versa. If A = ⎛ ⎜ ⎜ ⎜ ⎝ a11 a12 . . . a1n a21 a22 . . . a2n ⋮ ⋮ ⋮ am1 am2 . . . amn ⎞ ⎟ ⎟ ⎟ ⎠ , Then its transpose A T ∈ C n×m is obtained by converting rows to columns, A T = ⎛ ⎜ ⎜ ⎜ ⎝ a11 a21 . . . am1 a12 a22 . . . am2 ⋮ ⋮ ⋮ a1n a2n . . . amn ⎞ ⎟ ⎟ ⎟ ⎠ . Matrix Theory Matrix Transposition and Related - 3/30

Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. 命电有这女子 Matrix Theory Matrix Transposition and Related -4/30
Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. Matrix Theory Matrix Transposition and Related - 4/30

Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If Ae Cmxn is a matrix,its conjugate transpose AH(also sometimes denoted as A*)Chxm is obtained by converting rows to columns, 奇电有头子 Matrix Theory Matrix Transposition and Related -4/30
Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If A ∈ C m×n is a matrix, its conjugate transpose A H ( also sometimes denoted as A ∗ ) ∈ C n×m is obtained by converting rows to columns, Matrix Theory Matrix Transposition and Related - 4/30

Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If AeCmxn is a matrix,its conjugate transpose AH(also sometimes denoted as A*)Cnxm is obtained by converting rows to columns, and in addition,taking the complex conjugates of the elements, 命电有这女子 Matrix Theory Matrix Transposition and Related -4/30
Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If A ∈ C m×n is a matrix, its conjugate transpose A H ( also sometimes denoted as A ∗ ) ∈ C n×m is obtained by converting rows to columns, and in addition, taking the complex conjugates of the elements, Matrix Theory Matrix Transposition and Related - 4/30

Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If Ae Cmxn is a matri>ⅸ,its conjugate transpose A(also sometimes denoted as A*)ECnxm is obtained by converting rows to columns, and in addition,taking the complex conjugates of the elements, a11 a21 aml AH= a12 a22 3m2 a1n a2n 3mn 奇电有这头 Matrix Theory Matrix Transposition and Related -4/30
Transpose and Conjugate Transpose Conjugate Transpose There is a second type of transposition that requires more work when the matrix elements are complex numbers. If A ∈ C m×n is a matrix, its conjugate transpose A H ( also sometimes denoted as A ∗ ) ∈ C n×m is obtained by converting rows to columns, and in addition, taking the complex conjugates of the elements, A H = ⎛ ⎜ ⎜ ⎜ ⎝ a11 a21 . . . am1 a12 a22 . . . am2 ⋮ ⋮ ⋮ a1n a2n . . . amn ⎞ ⎟ ⎟ ⎟ ⎠ . Matrix Theory Matrix Transposition and Related - 4/30
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(1/2).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 13 群伦导引.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 14 子群及其陪集.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 15 循环群与群同构.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 16 代数格.pptx