电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro

Matrix Theory -Matrices School of Mathematical Sciences Teaching Group Main Reference books Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares. SlAM,2009. Reference books: Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition. Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition.SIAM, Philadelphia,2003. Matrix Theory Matrices Maintained by Yan-Fei Jing
: Main Reference books ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Matrices School of Mathematical Sciences Teaching Group Matrix Theory Matrices

MATRICES ARE UBIQUITOUS in computer science statistics applied mathematics Motivated largely by technological developments that generate extremely large scientific and Internet datasets,recent years have witnessed exciting developments in the theory and practice of matrix algorithms. 色电这女了 Matrix Theory Matrices -213
MATRICES ARE UBIQUITOUS in ▸ computer science ▸ statistics ▸ applied mathematics Motivated largely by technological developments that generate extremely large scientific and Internet datasets, recent years have witnessed exciting developments in the theory and practice of matrix algorithms. Matrix Theory Matrices - 2/13

What is a Matrix? Outline What is a Matrix? Some special types of matrix from nonzero pattern 奇电有头子 Matrix Theory Matrices -3/13
What is a Matrix? Outline What is a Matrix? Some special types of matrix from nonzero pattern Matrix Theory Matrices - 3/13

What is a Matrix? A matrix definition An array of numbers a11 ain A aml amn with m rows and n columns is an m x n matrix. 奇电有这头子 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 a1n aml ..amn with m rows and n columns is an m x n matrix. Element aij is located in position(i,j). 命电有这女子 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 a1n amn with m rows and n columns is an m x n matrix. Element aij is located in position (i,j). The element aij are scalars,namely,real or complex numbers. 命电有这女子 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 A= amn with m rows and n columns is an m x n matrix. Element aij is located in position(i,j). The element aij are scalars,namely,real or complex numbers. .The set of real numbers is R;the set of complex numbers is C. 命电有这女 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 A- aml amn with m rows and n columns is an m x n matrix. Element aij is located in position(i,j). The element aij are scalars,namely,real or complex numbers. The set of real numbers is R;the set of complex numbers is C. Remarks: 奇电有这头 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 a1n A aml amn with m rows and n columns is an m x n matrix. Element aij is located in position(i,j). The element aij are scalars,namely,real or complex numbers. The set of real numbers is R;the set of complex numbers is C. Remarks: 1.A matrix is a rectangular pattern of numbers-we usually enclose the numbers with brackets. 命电有这女 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13

What is a Matrix? A matrix definition An array of numbers a11 。。 a1n aml amn with m rows and n columns is an m x n matrix. Element aij is located in position (i,j). The element aij are scalars,namely,real or complex numbers. The set of real numbers is R;the set of complex numbers is C. Remarks: 1.A matrix is a rectangular pattern of numbers-we usually enclose the numbers with brackets. 2.These elements can be any numbers we choose-positive, negative,zero,fractions,decimals,and so on. 奇电这头了 Matrix Theory Matrices -4/13
What is a Matrix? A matrix definition An array of numbers A = ⎛ ⎜ ⎝ a11 . . . a1n ⋮ ⋮ am1 . . . amn ⎞ ⎟ ⎠ with m rows and n columns is an m × n matrix. ▸ Element aij is located in position (i, j). ▸ The element aij are scalars, namely, real or complex numbers. ▸ The set of real numbers is R; the set of complex numbers is C. Remarks: 1. A matrix is a rectangular pattern of numbers –we usually enclose the numbers with brackets. 2. These elements can be any numbers we choose - positive, negative, zero, fractions, decimals, and so on. 3. To refer briefly to a specific matrix we might label it, usually with a capital letter. Matrix Theory Matrices - 4/13
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(2/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.1 Green公式(1/2).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.4 Laplace变换应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.3 Laplace变换.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.2 Fourier变换应用(3/3).pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第五章 积分变换 5.2 Fourier变换应用(2/3).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx