电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)09 Vector norm

Matrix Theory -Vector Norms School of Mathematical Sciences Teaching Group Textbook: llse C.F.Ipsen,Numerical Matrix Analysis:Linear Systems and Least Squares.SIAM, 2009. Reference books: Fuzhen Zhang.Matrix Theory-Basic Results and Techniques,Second Edition. Springer,2011. Roger A.Horn and Charles A.Johnson:Matrix Analysis.Cambridge University Press,1985. Gene H.Golub and Charles F.Van Loan:Matrix Computations,Third Edition. Johns Hopkins Press,1996. Nicholas J.Higham.Accuracy and Stability of Numerical Algorithms,Second Edition.SIAM,2002. Y.Saad.Iterative Methods for Sparse Linear Systems,Second Edition.SIAM, Philadelphia,2003. Matrix Theory Vector Norms Maintained by Yan-Fei Jing
Textbook: Ilse C. F. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM, 2009. Reference books: ▸ Fuzhen Zhang. Matrix Theory-Basic Results and Techniques, Second Edition. Springer, 2011. ▸ Roger A. Horn and Charles A. Johnson: Matrix Analysis. Cambridge University Press, 1985. ▸ Gene H. Golub and Charles F. Van Loan: Matrix Computations, Third Edition. Johns Hopkins Press, 1996. ▸ Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM, 2002. ▸ Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, Philadelphia, 2003. Maintained by Yan-Fei Jing Matrix Theory ––Vector Norms School of Mathematical Sciences Teaching Group Matrix Theory Vector Norms

Introduction Outline Introduction Definition Two Important Inequalities Exercises Normwise Errors Comprehensive Problems Hold Inequality again 参老年这头 Matrix Theory Vector Norms -2/39
Introduction Outline Introduction Definition Two Important Inequalities Exercises Normwise Errors Comprehensive Problems H¨old Inequality again Matrix Theory Vector Norms - 2/39

Introduction Introduction In the context of linear system solution,the error in the solution constitutes a vector. r=b-A×X. 奇电有这头 Matrix Theory Vector Norms -3/39
Introduction Introduction In the context of linear system solution, the error in the solution constitutes a vector. r = b − A × x. ▸ If we do not want to pay attention to individual components of the error, perhaps because there are too many components, then we can combine all errors into a single number. ▸ This is akin to a grade point average which combines all grades into a single number. ▸ Mathematically, this “combining” is accomplished by norms. Matrix Theory Vector Norms - 3/39

Introduction Introduction In the context of linear system solution,the error in the solution constitutes a vector. r=b-A×X. If we do not want to pay attention to individual components of the error,perhaps because there are too many components, then we can combine all errors into a single number. 奇电有这头 Matrix Theory Vector Norms -3/39
Introduction Introduction In the context of linear system solution, the error in the solution constitutes a vector. r = b − A × x. ▸ If we do not want to pay attention to individual components of the error, perhaps because there are too many components, then we can combine all errors into a single number. ▸ This is akin to a grade point average which combines all grades into a single number. ▸ Mathematically, this “combining” is accomplished by norms. Matrix Theory Vector Norms - 3/39

Introduction Introduction In the context of linear system solution,the error in the solution constitutes a vector. r=b-A×X. If we do not want to pay attention to individual components of the error,perhaps because there are too many components, then we can combine all errors into a single number. This is akin to a grade point average which combines all grades into a single number. 命电有这女 Matrix Theory Vector Norms -3/39
Introduction Introduction In the context of linear system solution, the error in the solution constitutes a vector. r = b − A × x. ▸ If we do not want to pay attention to individual components of the error, perhaps because there are too many components, then we can combine all errors into a single number. ▸ This is akin to a grade point average which combines all grades into a single number. ▸ Mathematically, this “combining” is accomplished by norms. Matrix Theory Vector Norms - 3/39

Introduction Introduction In the context of linear system solution,the error in the solution constitutes a vector. r=b-A×X. If we do not want to pay attention to individual components of the error,perhaps because there are too many components, then we can combine all errors into a single number. This is akin to a grade point average which combines all grades into a single number. Mathematically,this "combining"is accomplished by norms. 命电有这女子 Matrix Theory Vector Norms -3/39
Introduction Introduction In the context of linear system solution, the error in the solution constitutes a vector. r = b − A × x. ▸ If we do not want to pay attention to individual components of the error, perhaps because there are too many components, then we can combine all errors into a single number. ▸ This is akin to a grade point average which combines all grades into a single number. ▸ Mathematically, this “combining” is accomplished by norms. Matrix Theory Vector Norms - 3/39

Introduction Introduction In the context of linear system solution,the error in the solution constitutes a vector. r =b-A xx. If we do not want to pay attention to individual components of the error,perhaps because there are too many components, then we can combine all errors into a single number. This is akin to a grade point average which combines all grades into a single number. Mathematically,this "combining"is accomplished by norms. Start with vector norms,measuring the length of a vector. 色老有头习 Matrix Theory Vector Norms -3/39
Introduction Introduction In the context of linear system solution, the error in the solution constitutes a vector. r = b − A × x. ▸ If we do not want to pay attention to individual components of the error, perhaps because there are too many components, then we can combine all errors into a single number. ▸ This is akin to a grade point average which combines all grades into a single number. ▸ Mathematically, this “combining” is accomplished by norms. Start with vector norms, measuring the length of a vector. Matrix Theory Vector Norms - 3/39

Definition Outline Introduction Definition Two Important Inequalities Exercises Normwise Errors Comprehensive Problems Hold Inequality again 奇老有这女子 Matrix Theory Vector Norms -4/39
Definition Outline Introduction Definition Two Important Inequalities Exercises Normwise Errors Comprehensive Problems H¨old Inequality again Matrix Theory Vector Norms - 4/39

Definition Definition A vector norm is a function from Cn to R with three properties: 命电有这女子 Matrix Theory Vector Norms -5/39
Definition Definition A vector norm ∣∣ ⋅ ∣∣ is a function from C n to R with three properties: Matrix Theory Vector Norms - 5/39

Definition Definition A vector norm is a function from Ch to R with three properties: Nonnegative:llxl≥0 for all x∈Cn, xI=0 if and only if x =0. 命电有这女子 Matrix Theory Vector Norms -5/39
Definition Definition A vector norm ∣∣ ⋅ ∣∣ is a function from C n to R with three properties: Nonnegative: ∣∣x∣∣ ≥ 0 for all x ∈ C n , ∣∣x∣∣ = 0 if and only if x = 0. Homogeneous: ∣∣αx∣∣ = ∣α∣∣∣x∣∣ for all α ∈ C, x ∈ C n . Triangle inequality: ∣∣x + y∣∣ ≤ ∣∣x∣∣ + ∣∣y∣∣ for all x, y ∈ C n . Matrix Theory Vector Norms - 5/39
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)08 Unitary Matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)07 Matrix Inversion.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)06 Matrix Transposition and Related.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)05 Special matrices-matlab.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)04 Matrix space and special ones.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)03 Matrices-special matrices.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)02 Matrices Intro.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)01 Vector space.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第五章 矩阵函数及其应用.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第二章 向量与矩阵范数.pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第三章 矩阵分解(李厚彪).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)第一章 线性代数基础与核心思想.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.2 母函数与正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第八章 Legendre多项式 §8.1 Legendre方程与求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.4 Bessel函数应用.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.3 Bessel函数的正交性.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.2 Bessel函数的母函数.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第七章 Bessel函数 §7.1 Bessel方程的求解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.3 基本解.pdf
- 电子科技大学:《数学物理方程与特殊函数 Mathematical Physics Equations with Special Function》课程教学资源(课件讲稿)第六章 Green函数法 6.2 Dirichlet问题求解(2/2).pdf
- 电子科技大学:《矩阵理论 Matrix Theory》课程教学资源(课件讲稿)10 matrix norm.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 01 命题逻辑(主讲:姚远).pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 02 谓词逻辑初步.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 03 证明方法.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 04 集合及其运算.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 05 关系与函数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 06 集合的基数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 07 数论基础.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 08 归纳与递归.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 10 离散概率.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 11 关系的性质.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 12 等价关系与偏序关系.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 13 群伦导引.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 14 子群及其陪集.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 15 循环群与群同构.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 16 代数格.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 17 布尔代数.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 18 图论基本概念.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 19 图的连通性.pptx