西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 15 The second Law of Thermodynemics and Entropy

UNIVERSITY PHYSICS I CHAPTER 15 The Second law of Thermodynamics and Entropy Chapter 15 The second law of thermodynamics The zeroth law of thermodynamics The expression of the fundamental experiment fact The first law of thermodynamics The a statement of conservation of energy for pure thermodynamic system The second law of thermodynamics: Why we need the second law of thermodynamics?
1 Chapter 15 The second law of thermodynamics The zeroth law of thermodynamics: The expression of the fundamental experiment fact. The first law of thermodynamics: The a statement of conservation of energy for pure thermodynamic system. The second law of thermodynamics: Why we need the second law of thermodynamics?

815.1 why do some things happen, while others do not? 1. Some examples that can not happen One of the sacred truths of physics is the principle of energy conservation. For instance O A rock does not jump spontaneously up to the top of the cliff; ----violate the Cwe theorem 2 Pizza does not warm itself: ----violate the first law of thermodynamics 3 Water cannot become into ice automatically OA drop of ink spread throughout water never regroup into a drop-shaped clump 815.1 why do some things happen, while others do not? It is not the energy of the system that controls the direction of irreversible processes; it is another property that we introduce in this chapter. 2. What is the irreversible processes The isothermal expansion of an ideal gas: 1→H2"H1=Q= nITin2>0 V2→V1W2=Q2=nRTn<0 result W, +W=0 Reversible Q1+Q2=0
2 §15.1 why do some things happen, while others do not? One of the sacred truths of physics is the principle of energy conservation. 1 A rock does not jump spontaneously up to the top of the cliff;----violate the CWE theorem 2 Pizza does not warm itself; ----violate the first law of thermodynamics 3 Water cannot become into ice automatically; 4A drop of ink spread throughout water never regroup into a drop-shaped clump. For instance: 1. Some examples that can not happen It is not the energy of the system that controls the direction of irreversible processes; it is another property that we introduce in this chapter. §15.1 why do some things happen, while others do not? 2. What is the irreversible processes The isothermal expansion of an ideal gas: 1frictionless, quasi-static V1 →V2 ln 0 1 2 1 = 1 = > V V W Q nRT V2 →V1 ln 0 2 1 2 = 2 = < V V W Q nRT result : 0 W1 +W2 = Q1 + Q2 = 0 Reversible!

815.1 why do some things happen, while others do not? Lead shot Lead Thermal reservoir Control knob (a) Initial state i b) Final state 815.1 why do some things happen, while others do not? @friction, quasi-static V1→V O,=W,+W=nRTIn-+w >0) 2,=Wi+W,=nRTIn -I+w (0 reversible
3 §15.1 why do some things happen, while others do not? 2friction, quasi-static V1 →V2 Q1 = W1 +W f W f V V = nRT + 1 2 ln (>0) (>0) V2 →V1 Q W +W f = ′ 2 1 W f V V = nRT + 2 1 ln (0) result Q1 + Q2 = 2Wf > 0 Irreversible! : §15.1 why do some things happen, while others do not?

815.1 why do some things happen, while others do not? @frictionless, not quasi-static 2,=W< Pdv=nRT In Q2|=WP=nRW女 resu ltQ1+Q2=W1+W2<0 The wok done on the system: W2l-W, The heat transfer to the environgiht=o Irreversible! s15.2 heat engines and the second law of thermodynamics 1. Heat engines and refrigerator engines We use the word engine to mean a system such as a gas that performs a closed cycle on P-v diagram. If the cycle is performed clockwise we called it a heat engine: If counterclockwise we called it a refrigerator engine. The function of a heat engine is to transform disordered internal energy into macroscopic work using the heat transfer between reservoirs at different temperatures
4 3frictionless, not quasi-static 1 2 1 1 d ln 2 1 V V Q W P V nRT V ∫V = = ∫ result : 0 Q1 + Q2 = W1 +W2 < The wok done on the system: W2 −W1 The heat transfer to the environment Q2 −:Q1 Irreversible! §15.1 why do some things happen, while others do not? §15.2 heat engines and the second law of thermodynamics 1. Heat engines and refrigerator engines We use the word engine to mean a system such as a gas that performs a closed cycle on P-V diagram. If the cycle is performed clockwise, we called it a heat engine; If counterclockwise, we called it a refrigerator engine. The function of a heat engine is to transform disordered internal energy into macroscopic work using the heat transfer between reservoirs at different temperatures

s15.2 heat engines and the second law of thermodynamics 2. The efficiency of the heat engines Q W>0 For a cycle: ∠1U=0 total =W=0H -ec s15.2 heat engines and the second law of thermodynamics 的 冷凝器 net 2H-e Q =1 2H 2H 2H
5 2. The efficiency of the heat engines QC TC W For a cycle: Q W QH QC U = = − = total ∆ 0 V P W > 0 §15.2 heat engines and the second law of thermodynamics QH QC W1 W2 H C H H C H Q Q Q Q Q Q W = − − = = 1 net ε §15.2 heat engines and the second law of thermodynamics

s15.2 heat engines and the second law of thermodynamics Define the efficiency of the heat engine QH H TThe first law of thermodynamics W(=Q1 does not forbid E=1 C E=1 eH 2H Perfect engine s15.2 heat engines and the second law of thermodynamics 3. The second law of thermodynamics A perfect heat engines(8=1)do not exist. 4. The examples for efficiency of heat engines a) Clausius-Rankine cycle 1→)2dp=0 QH=nC,t2-l) do=0 2→)3d0=0 12P2=73p 6
6 Define the efficiency of the heat engine: QH W ε = Q C The first law of thermodynamics does not forbid ε =1 Perfect engine ε =1 H C H H C Q Q Q Q Q = − − ε = 1 §15.2 heat engines and the second law of thermodynamics 3. The second law of thermodynamics A perfect heat engines (ε =1) do not exist. 4. The examples for efficiency of heat engines (a) Clausius-Rankine cycle 1 → 2 d p = 0 ( ) QH = nCp T2 −T1 2→3 dQ = 0 1 3 1 1 2 2 − − − − = γ γ γ γ T p T p §15.2 heat engines and the second law of thermodynamics

s15.2 heat engines and the second law of thermodynamics 3→4dp=0gc=nC(T4-) 0=0 T =T1p2 E=1 T-7 =1 OHT2 P≠0 E<1 s15.2 heat engines and the second law of thermodynamics (b)Otto cycle
7 3 → 4 d p = 0 ( ) QC = nCp T4 −T3 4 → 1 dQ = 0 1 1 2 1 4 1 − − − − = γ γ γ γ T p T p H C Q Q ε = 1− 2 1 3 4 1 T T T T − − = − γ −γ = − 1 1 2 1 ( ) p p 0 1 Q P2 ≠ ∴ ε < §15.2 heat engines and the second law of thermodynamics (b) Otto cycle QH W QC e b c d Vf Vi V P a §15.2 heat engines and the second law of thermodynamics

s15.2 heat engines and the second law of thermodynamics →d C, (ld-l) e 2c=nc, (T-T) d →e T TV. O b→CTv"=T b E=1 Ratio of compression s15.2 heat engines and the second law of thermodynamics (c) Diesel cycle P b→cQn=mcp(T-T) d→)aQl=nc(T-T) Th V2 2 c b→c T V c→)dTJ"=Tvy 2 P)ab 2-1=Tyr-l 8
8 1 1 1 1 ( ) 1 1 1 − − = − = − = − − − = − r r i f c b d c e b V V T T T T T T α ε f i V V α = Ratio of compression QH W QC a b c d V f Vi V P e §15.2 heat engines and the second law of thermodynamics ( ) ( ) C V e b H V d c Q nc T T Q nc T T = − c →d = − e →b 1 1 1 1 − − − − = = γ γ γ γ f f T V T V T V T V b i c d →e d e i b →c (c) Diesel cycle a d c b V o p V 2 V3 V1 QH QC ( ) ( 1) ( ) 1 1 2 1 3 2 1 2 3 − − = − − V V V V V V γ γ γ ε §15.2 heat engines and the second law of thermodynamics b→c 3 2 V V T T c b = 1 1 2 1 3 1 1 1 − − − − = = γ γ γ γ T V T V T V T V b a d c c→d a→b ( ) ( ) C V d a H P c b Q nc T T Q nc T T = − b →c = − d →a

8 15.3 The Carrnot heat engine and its efficiency 1. Carrnot cycle of ideal gases a→bQ= nrt\ c→d| EcnR Volume b→cTnV=TV d→aTmV=Tl 8 15.3 The Carrnot heat engine and its efficiency 2. The efficiency of carrnot cycle 2H-1o nRTHIn -nRTIn QH nITIn T the efficiency of Carrnot H cycle for ideal gases
9 §15.3 The Carrnot heat engine and its efficiency 1. Carrnot cycle of ideal gases a b H H V V a →b Q = nRT ln d c C C V V c →d |Q |= nRT ln −1 −1 → = r C c r b c THVb T V −1 −1 → = r C d r d a THVa T V d c a b V V V V = H C H H C a b H d c C a b H H H C T T T T T V V nRT V V nRT V V nRT Q Q Q = − − = − = − = 1 ln ln ln | | ε H C T T ε =1− --the efficiency of Carrnot cycle for ideal gases 2. The efficiency of Carrnot cycle §15.3 The Carrnot heat engine and its efficiency

815. 4 refrigerator engines and the second law of thermodynamics 1. The refrigerator engines P O W<0 W total/g 2Hl-ea 2c 0H=e +w T 815.4 refrigerator engines and the second law of thermodynamics Define the coefficient of performance: K H 1 a perfect refrigerator engine is one that has an infinite coefficient of performance. It does not violate the first law of thermodynamics 2. The second law of thermodynamics A perfect refrigerator engines(K-oo) do not exI st 10
10 §15.4 refrigerator engines and the second law of thermodynamics 1. The refrigerator engines QC TC V P W < 0 Q Q W Q W Q Q H C H C = + total = = − Define the coefficient of performance: 1 1 − = − = = C H C H C C Q Q Q Q Q W Q K A perfect refrigerator engine is one that has an infinite coefficient of performance. It does not violate the first law of thermodynamics 2. The second law of thermodynamics A perfect refrigerator engines (K=∞) do not exist. §15.4 refrigerator engines and the second law of thermodynamics
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 13 Temperature Heat Transfer and First Lawl Thermodynamics.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 14 Kinetic Theory.pdf
- 《量子力学习题》习题.doc
- 《量子力学习题》中心力场和正常塞曼效应.doc
- 《量子力学习题》自旋和角动量耦合.doc
- 《量子力学习题》态和力学量的表象.doc
- 《量子力学习题》力学量用算符表达.doc
- 《量子力学习题》波函数与薛定谔方程.doc
- 《量子力学习题》微观粒子的波粒二象性.doc
- 《量子力学习题》微扰理论.doc
- 《量子力学习题》课堂练习.doc
- 《量子力学习题》复习题.doc
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第五章 准静态电磁场 Quasistatic Electromagnetic Field.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第七章 均匀传输线中的导行电磁波 Guided Electromagnetic Wave in Uniform Transmission Line.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第四章 时变电磁场 Time-Varying Electromagnetic Field.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第八章 波导 Waveguide.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第六章 平面电磁波的传播 Plane Wave Propagation.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第二章 恒定电场 Steady Electric Field.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第三章 恒定磁场 Steady Magnetic Field.pps
- 西南交通大学:《电磁场》课程教学资源(PPT课件)第0章 矢量分析 Vector Analysis.pps
- 北京大学:《电磁学》课程教学资源(习题讲义)6.3 表.doc
- 北京大学:《电磁学》课程教学资源(PPT课件)Maxwell立电磁场理论的三篇论文.pps
- 北京大学:《电磁学》课程教学资源(习题讲义)例题1.doc
- 北京大学:《电磁学》课程教学资源(习题讲义)例题2.doc
- 北京大学:《电磁学》课程教学资源(PPT课件)位移电流.pps
- 北京大学:《电磁学》课程教学资源(习题讲义)电磁场的能量密度和能流密度.doc
- 北京大学:《电磁学》课程教学资源(PPT课件)电磁波.pps
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 电磁场与电磁波 第十一章 真空中的静电场 第四节 静电场的分布和电场对带电体的作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)习题课讨论.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 电磁场与电磁波 第十一章 真空中的静电场 第一节 场和场的描述 第二节 静电的基本现象和实验规律 第三节 静电场及其描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十二章 真空中的稳恒磁场 第一节 磁的基本现象和基本规律 第二节 稳恒磁场及其描述(1/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十二章 真空中的稳恒磁场 第二节 稳恒磁场及其描述(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十二章 真空中的稳恒磁场 第四节 磁场对运动电荷及电流的作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十二章 真空中的稳恒磁场 第三节 若干磁场分布的计算.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十二章 真空中的稳恒磁场 习题课讨论.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十三章 物质中的电场与磁场 第三节 电场的能量 第四节 磁介质中的稳恒磁场(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十四章 变化中的磁场和电场 第一节 电磁感应现象及其规律 第二节 感应电动势(1/2)).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十四章 变化中的磁场和电场 第二节 感应电动势(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十三章 物质中的电场与磁场 第一节 导体中的静电场 第二节 电介质中的静电场.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第十四章 变化中的磁场和电场 第三节 自感和互感(自学)第四节 磁场能量(自学).ppt