复旦大学:《概率论》精品课程教学资源(习题答案)统计学中的三大分布 SOME SPECIFIC PROBABILITY DISTRIBUTIONS

SOME SPECIFIC PROBABILITY DISTRIBUTIONS 1. NORMAL RANDOM VARIABLES with mean u and variance a2(abbreviated by x a N[u, 02] if the density function of x is given bb 1. 1. Probability Density Function. The random variable X is said to be normally distribute f(x;μ,a2) The normal probability density function is bell-shaped and symmetric. The figure below shows the probability distribution function for the normal distribution with a u=0 and o=l. The areas between the two lines is 0.68269. This represents the probability that an observation lies within one standard deviation of the mear FIGURE 1. Normal Probability density Function μ=0
SOME SPECIFIC PROBABILITY DISTRIBUTIONS 1. Normal random variables 1.1. Probability Density Function. The random variable X is said to be normally distributed with mean µ and variance σ2 (abbreviated by x ∼ N[µ, σ2] if the density function of x is given by f (x ; µ, σ2) = 1 √ 2πσ2 · e −1 2 ( x−µ σ ) 2 (1) The normal probability density function is bell-shaped and symmetric. The figure below shows the probability distribution function for the normal distribution with a µ = 0 and σ =1. The areas between the two lines is 0.68269. This represents the probability that an observation lies within one standard deviation of the mean. Figure 1. Normal Probability Density Function -1 1 .1 .2 .3 Μ = 0, Σ = 1 Date: August 9, 2004. 1

SOME SPECIFIC PROBABILITY DISTRIBUTIONS The next figure below shows the portion of the distribution between -4 and 0 when the mean is d o is equal to tw FIGURE 2. Normal Probability Density Function Showing P(-4<I<O Probability Between Limits is 0. 30233 0 0.18 0.16 0.14 0.04 4 1. 2. Properties of the normal random variable. (x)=u, var(x)=g b: The density is continuous and symmetric about u c: The population mean, median, and mode coinci d: The range is unbound e: There are points of inflection atμ±σ f: It is completely specified by the two parameters u and a g: The sum of two independently distributed normal random variables is normally distributed If Y= aX1 BX2 +y where X1 NN(1, 01) and X2 NN(a2, 022) and X1 and X2 are 1.3. Distribution function of a normal random variable f(s;u, o2)d Here is the probability density function and the cumulative distribution of the normal distribution with u=0 and o= 1
2 SOME SPECIFIC PROBABILITY DISTRIBUTIONS The next figure below shows the portion of the distribution between -4 and 0 when the mean is one and σ is equal to two. Figure 2. Normal Probability Density Function Showing P(−4 <x< 0) −8 −6 −4 −2 0 2 4 6 8 10 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Probability Between Limits is 0.30233 Density Critical Value 1.2. Properties of the normal random variable. a: E(x) = µ, Var(x) = σ2. b: The density is continuous and symmetric about µ. c: The population mean, median, and mode coincide. d: The range is unbounded. e: There are points of inflection at µ ± σ. f: It is completely specified by the two parameters µ and σ2. g: The sum of two independently distributed normal random variables is normally distributed. If Y = αX1 + βX2 + γ where X1 ∼ N(µ1,σ1 2) and X2 ∼ N(µ2,σ2 2) and X1 and X2 are independent, then Y ∼ N(αµ1 + βµ2 + γ; α2σ2 1 + β2σ2 2). 1.3. Distribution function of a normal random variable. F(x ; µ, σ2) = P r (X ≤ x) = Z x −∞ f (s ; µ, σ2 )ds (2) Here is the probability density function and the cumulative distribution of the normal distribution with µ = 0 and σ = 1

SOME SPECIFIC PROBABILITY DISTRIBUTIONS IGURE 3. Normal pdf and cdf Probability Density Function Cumulative distribution Function 08 1.4. Evaluating probability statements with a normal random variable. If x NN(u, 02) N(0,1) E(
SOME SPECIFIC PROBABILITY DISTRIBUTIONS 3 Figure 3. Normal pdf and cdf −10 −5 0 5 10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Probability Density Function X f(X) −10 −5 0 5 10 0 0.2 0.4 0.6 0.8 1 Cumulative Distribution Function X F(X) 1.4. Evaluating probability statements with a normal random variable. If x ∼ N(µ,σ2) then, Z = X−µ σ ∼ N(0, 1) E (Z) = E X−µ σ = 1 σ · (E(X) − µ)=0 V ar (Z) = V ar X−µ σ = 1 σ2 V ar(X − σ) = σ2 σ2 = 1 (3)

SOME SPECIFIC PROBABILITY DISTRIBUTIONS Pr(a≤x≤b)=Pr(a-≤x-≤b-p) 0.1)-F(=0. area below 4. Probability of Intervals 3 2 b 1.96 a=1.6 We can then merely look in tables for the distribution function of a N(0, 1) variable 1.5. Moment generating function of a normal random variable. The moment generating function for the central moments is as follows Mx(t) The first central moment is E(Xx-p)=#(=)h=0 The second central moment is
4 SOME SPECIFIC PROBABILITY DISTRIBUTIONS Consequently, P r(a ≤ x ≤ b) = P r (a − µ ≤ x − µ ≤ b − µ) = P r h a − µ σ ≤ x − µ σ ≤ b − µ σ i = F b − µ σ ; 0, 1 − F a − µ σ ; 0, 1 = area below (4) Figure 4. Probability of Intervals b - Μ Σ a - Μ Σ .1 .2 .3 Μ = 0, Σ = 1 b = -1.96 a = 1.6 We can then merely look in tables for the distribution function of a N(0,1) variable. 1.5. Moment generating function of a normal random variable. The moment generating function for the central moments is as follows MX (t) = e t2 σ2 2 . (5) The first central moment is E (X − µ ) = d dt e t2 σ2 2 |t = 0 = t σ2 e t2 σ2 2 |t = 0 = 0 (6) The second central moment is

SOME SPECIFIC PROBABILITY DISTRIBUTIONS E(x-)2=(=+)h=0 (#a(=)+a2(f)k= The third central moment is E(x-)2=需( (t2 () (2°(=)+2to +3 g6 +3tσ 0 The fourth central moment i E(X-p)4=(-)h σ8(e)+3t2o +326(e (=) +6t2a +3a(e2 2. CHI-SQUARE RANDOM VARIABLE 2.1. Probability Density Function. The random variable X is said to be a chi-square random variable with v degrees of freedom (abbreviated x(u)] if the density function of X is given by )=2r( 20 (10) 0 otherwise here r(.is the gamma function defined by r(r)=fo ur 0 (11) Note that for positive integer values of r, r(r)=(r-1)!
SOME SPECIFIC PROBABILITY DISTRIBUTIONS 5 E (X − µ )2 = d2 dt2 e t2 σ2 2 |t = 0 = d dt t σ2 e t2 σ2 2 |t= 0 = t2 σ4 e t2 σ2 2 + σ2 e t2 σ2 2 |t= 0 = σ2 (7) The third central moment is E (X − µ )3 = d3 dt3 e t2 σ2 2 |t= 0 = d dt t2 σ4 e t2 σ2 2 + σ2 e t2 σ2 2 |t = 0 = t 3 σ6 e t2 σ2 2 + 2 t σ4 e t2 σ2 2 + t σ4 e t2 σ2 2 |t= 0 = t 3 σ6 e t2 σ2 2 + 3 t σ4 e t2 σ2 2 |t = 0 = 0 (8) The fourth central moment is E (X − µ )4 = d4 dt4 e t2 σ2 2 |t = 0 = d dt t 3 σ6 e t2 σ2 2 + 3 t σ4 e t2 σ2 2 |t = 0 = t 4 σ8 e t2 σ2 2 + 3 t 2 σ6 e t2 σ2 2 + 3 t 2 σ6 e t2 σ2 2 + 3 σ4 e t2 σ2 2 |t = 0 = t4 σ8 e t2 σ2 2 + 6 t2 σ6 e t2 σ2 2 + 3 σ4 e t2 σ2 2 |t = 0 = 3 σ4 (9) 2. Chi-square random variable 2.1. Probability Density Function. The random variable X is said to be a chi-square random variable with ν degrees of freedom [abbreviated χ2(ν) ] if the density function of X is given by f (x ; ν) = 1 2 ν 2 Γ ( v 2 ) x ν−2 2 e −x 2 0 0 (11) Note that for positive integer values of r, Γ(r) = (r - 1)!

SOME SPECIFIC PROBABILITY DISTRIBUTIONS The following diagram shows the pdf and cdf for the chi-square distribution with parameters v FIGuRE 5. Ch df and cdf Probability Density Function Cumulative Distribution Function 0 0 0.02 X 2.2. Properties of the chi-square random variable 2.2.1. x and N(0, 1). Consider n independent random variables IfX;~N(0,1) (12) It can also be shown that IfX;~N(0,1) then >(Xi-X)N x(n-1) 13) because this is the sum of (n-1)independent random variables given that X and(n-1)of the x's 222.x2andN(1,a2) IfX1~N(μ,a2) 1.2 th (14) and x-12 ~x2(n-1) 2.2.3. Sums of chi-square random variables. If yi and y2 are independently distributed as x(v1) (1+D2)
6 SOME SPECIFIC PROBABILITY DISTRIBUTIONS The following diagram shows the pdf and cdf for the chi-square distribution with parameters ν =10. Figure 5. Chi-square pdf and cdf 0 10 20 30 0 0.02 0.04 0.06 0.08 0.1 Probability Density Function X f(X) 0 10 20 30 0 0.2 0.4 0.6 0.8 1 Cumulative Distribution Function X F(X) 2.2. Properties of the chi-square random variable. 2.2.1. χ2 and N(0,1). Consider n independent random variables. If Xi ∼ N (0, 1) i = 1, 2, ... , n then Pn i=1 X2 i ∼ χ2(n) (12) It can also be shown that If Xi ∼ N (0, 1) i = 1, 2, ... , n then Pn i=1 (Xi − X¯) 2 ∼ χ2(n − 1) (13) because this is the sum of (n-1) independent random variables given that X¯ and (n-1) of the x’s are independent. 2.2.2. χ2 and N(µ,σ2). If Xi ∼ N (µ, σ2) i = 1, 2, ... , n then Xn i=1 Xi − µ σ 2 ∼ χ2(n) (14) and Xn i=1 Xi − X¯ σ 2 ∼ χ2 (n − 1) 2.2.3. Sums of chi-square random variables. If y1 and y2 are independently distributed as χ2(ν1) and χ2(ν2), respectively, then y1 + y2 ∼ χ2(ν1 + ν2). (15)

SOME SPECIFIC PROBABILITY DISTRIBUTIONS 2.2.4. Momen hi-square random variables Mean(x(u))=v= degrees of freedom (x2(u) (16) 2.3. The distribution function of x(v) s tabulated in most statistics and econometrics texts 2.4. Moment generating function. The moment generating function is as follows (1-2t) The first moment is E(x)=是(m=m)h t=0 (19) 3. THE STUDENTS T RANDOM VARIABLE This distribution was published by William Gosset in 1908. His employer, Guinness Breweries equired him to publish under a pseudonym, so he chose" Student 3. 1. Relationship of Students t-Distribution to Normal Distribution. The ratio t=xt0.1) has the Student's t density function with v degrees of freedom where the standard normal variate the numerator is distributed independently of the x variate in the denominator. Tabulations of the associated distribution function are included in most statistics and econometrics books note nat it is sy 3.2. Probability Density Function. The density of Student's t distribution is given b t2 √Dr(兰)
SOME SPECIFIC PROBABILITY DISTRIBUTIONS 7 2.2.4. Moments of chi-square random variables. M ean (χ2 (ν)) = ν = degrees of freedom V ar (χ2 (ν)) = 2 ν Mode (χ2 (ν)) = ν − 2 (16) 2.3. The distribution function of χ2(ν). F(x; ν) = Z x 0 f (s; ν)ds (17) is tabulated in most statistics and econometrics texts. 2.4. Moment generating function. The moment generating function is as follows MX(t) = 1 (1 − 2 t) υ/2 ,t < 1 2 (18) The first moment is E ( X ) = d dt 1 ( 1 − 2 t ) υ/2 |t = 0 = υ ( 1 − 2 t ) ( υ + 1)/2 |t = 0 = υ (19) 3. The Student’s t random variable This distribution was published by William Gosset in 1908. His employer, Guinness Breweries, required him to publish under a pseudonym, so he chose ”Student.” 3.1. Relationship of Student’s t-Distribution to Normal Distribution. The ratio t = N(0, 1) qχ2(ν) ν (20) has the Student’s t density function with ν degrees of freedom where the standard normal variate in the numerator is distributed independently of the χ2 variate in the denominator. Tabulations of the associated distribution function are included in most statistics and econometrics books. Note that it is symmetric about origin. 3.2. Probability Density Function. The density of Student’s t distribution is given by: f (t; ν ) = Γ ν + 1 2 √πν Γ ν 2 1 + t 2 ν −( ν +1) 2 − ∞ <t< ∞ (21)

SOME SPECIFIC PROBABILITY DISTRIBUTIONS The following diagram shows the pdf and cdf for the Student's t-distribution with parameter v FIGURE 6. Student's t distribution pdf and cdf Probability Density Function Cumulative Distribution Function 0.15 0.05 The following diagram shows the cdf for the Student's t-distribution with parameters v=10 and FIGURE 7. Student's t-distribution with alternative parameter levels f(x) =3.3 0.2 0.1 2
8 SOME SPECIFIC PROBABILITY DISTRIBUTIONS The following diagram shows the pdf and cdf for the Student’s t-distribution with parameter ν = 10. Figure 6. Student’s t distribution pdf and cdf −10 −5 0 5 10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Probability Density Function X f(X) −10 −5 0 5 10 0 0.2 0.4 0.6 0.8 1 Cumulative Distribution Function X F(X) The following diagram shows the cdf for the Student’s t-distribution with parameters ν = 10 and ν = 3. Figure 7. Student’s t-distribution with alternative parameter levels -4 -2 2 4 0.1 0.2 0.3 fHxL v = 3 v = 10

SOME SPECIFIC PROBABILITY DISTRIBUTIONS 3.3. Moments of student's t-distribution (t()=0 (22) 4 THE F (F ISHER VARIANCE RATIO) STATISTIC 4.1. Distribution Function. If x21(v1)and x22(v2) are independently distributed chi-square vari- ates. then X(2 x2(2) has the F density with v1 and v2 degrees of freedom 4.2. Probability Density Function. The density of the F distribution is f (F; v1, v2) F>0 (24) 0 otherwise Tabulations of the distribution of F(v1, va) are widely available. Note that Fn, a(Fra m and therefore the critical values can be found from fa vi, vz The following diagram shows the pdf and cdf for the f distribution with FIGURE 8. F Distributtion pdf and cdf Probability Density Function Cumulative Distribution Function 06 2 2 Here is the pdf of the F distribution for some alternative values of pairs of values(vn and v2)
SOME SPECIFIC PROBABILITY DISTRIBUTIONS 9 3.3. Moments of Student’s t-distribution. M ean (t(ν)) = 0 V ar (t(ν)) = ν ν − 2 (22) 4. The F (Fisher variance ratio) statistic 4.1. Distribution Function. If χ2 1(ν1) and χ2 2(ν2) are independently distributed chi-square variates, then F(ν1, ν2 ) = χ2 1(ν1) ν1 χ2 2(ν2) ν2 = ν2 ν1 · χ2 1(ν1) χ2 2(ν2) (23) has the F density with ν1 and ν2 degrees of freedom. 4.2. Probability Density Function. The density of the F distribution is f ( F; ν1, ν2) = Γ ( ν1+ν2 2 ) Γ ( ν1 2 ) Γ ( ν2 2 ) · ν1 ν2 ν1 2 · F ν1 2 −1 · 1 + ν1 ν2 F −(ν1+ν2) 2 F > 0 = 0 otherwise (24) Tabulations of the distribution of F(ν1,ν2) are widely available. Note that Fν1, ν2 ∼ 1 F ν2, ν1 and therefore the critical values can be found from fα ν1 , ν2 = 1 f1−α ν2, ν1 . The following diagram shows the pdf and cdf for the F distribution with parameters ν1 = 12 and ν2 = 20. Figure 8. F Distributtion pdf and cdf 0 2 4 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Probability Density Function X f(X) 0 2 4 6 0 0.2 0.4 0.6 0.8 1 Cumulative Distribution Function X F(X) Here is the pdf of the F distribution for some alternative values of pairs of values (ν1 and ν2)

SOME SPECIFIC PROBABILITY DISTRIBUTIONS FIGURE 9. Probability of Intervals 0.8 2,v2=50) 0.6 1=12 10 0.4 1=6 30 0.2 2 3 4 5 4. 3. moments of the f distribution E(F)= n2(1+v2-2) 6)
10 SOME SPECIFIC PROBABILITY DISTRIBUTIONS Figure 9. Probability of Intervals -1 1 2 3 4 5 6 0.2 0.4 0.6 0.8 fHxL HΝ1 = 12, Ν2 = 50L HΝ1 = 12, Ν2 = 10L HΝ1 = 6, Ν2 = 30L 4.3. moments of the F distribution. E(F) = ν2 ν2 − 2 (25) V ar(F) = 2ν2 2(ν1 + ν2 − 2) ν1(ν2 − 2)2(ν2 − 4) (26)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《概率论》精品课程教学资源(习题答案)概率论的简单历史 short history of Probability.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)2007年期末考试试卷(B卷).pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)2007年期末考试试卷(A卷).pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)概率中的50个反例.pdf
- 清华大学:《概率统计》课程教学资源(PDF电子讲义课件,制作:李东风,共九章).pdf
- 高等学校教材:《SPSS统计分析基础教程》PDF电子书(第一、二、三、四、五章).pdf
- 中国科学技术大学:统计与矩阵分析——统计是什么(张卫明).ppt
- 华中科技大学社会学系:《多元统计分析》PPT讲义_社会统计学导论.ppt
- 复旦大学:《卫生统计学》课程教学资源(PPT课件讲稿)绪论.ppt
- 山东大学物理学院:《实验数据处理方法》课程教学资源(PPT讲稿)第一章 引言(王永刚).ppt
- 河海中医药大学:《统计学》课程PPT课件_第1章 导论、统计学与统计数据(刘俊娟).ppt
- 云南大学:《人口统计学原理与方法》课程教学资源(PPT课件讲稿)第一讲 人口规模及其变化统计、人口性别年龄构成统计.ppt
- 云南大学:《人口统计学原理与方法》课程教学资源(PPT课件讲稿)第二讲 生育统计与分析.ppt
- 云南大学:《人口统计学原理与方法》课程教学资源(PPT课件讲稿)第四讲 其它人口统计.ppt
- 云南大学:《人口统计学原理与方法》课程教学资源(PPT课件讲稿)第五讲 人口预测 Population Projection.ppt
- 云南大学:《人口统计学原理与方法》课程教学资源(PPT课件讲稿)第三讲 死亡统计与分析.ppt
- 河南中医药大学:《应用统计学》课程教学资源(电子教案)01教学设计 第1章 导论(刘俊娟).docx
- 河南中医药大学:《应用统计学》课程教学资源(PPT课件讲稿)第1章 导论、统计学与统计数据(刘俊娟).ppt
- 《医学统计学》课程教学课件(PPT讲稿)第十一章 秩和检验.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第9章 相关与回归.ppt
- 复旦大学:《概率论》精品课程教学资源(习题答案)抽奖和玛丽莲问题 The Monty Hall Problem.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)扑克牌和概率 Probability and Poker.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)听贝叶斯介绍贝叶斯方法 essay.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)购物券中的问题 coupon.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)布丰投针问题 Buffon’s needle problem.pdf
- 复旦大学:《概率论》精品课程教学资源(习题答案)林德贝格-费勒中心极限定理的概率证明 A Probabilistic Proof of the Lindeberg-Feller.pdf
- 复旦大学:《概率论》精品课程教学资源(电子教案)第一章 概率论基础知识.pdf
- 复旦大学:《概率论》精品课程教学资源(电子教案)第二章 条件概率与统计独立.pdf
- 复旦大学:《概率论》精品课程教学资源(电子教案)第三章 随机变量与分布函数.pdf
- 复旦大学:《概率论》精品课程教学资源(电子教案)第四章 数字特征和特征函数.pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)习题讲解.pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)第一章 事件与概率.pdf
- 复旦大学:《概率论》精品课程教学资源(电子教案)(第一、二、三、四、五章 极限定理).pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)第三章 随机变量与分布函数.pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)第二章 条件概率与统计独立性.pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)第五章 极限定理.pdf
- 复旦大学:《概率论》精品课程教学资源(补充习题)第四章 数字特征和特征函数.pdf
- 复旦大学:《卫生统计学》理论课教学资源_教学大纲.pdf
- 复旦大学:《卫生统计学》课程教学资源(习题)卫生统计学Stata实现说明.doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第二章 统计描述Stata实现.doc