复旦大学:《电动力学》学生课堂报告_Transfer matrix method in solving EM problem

照人学 Fudan University Transfer Matrix Method In Solving EM Problem WNBOIN PO oduced by Yaoxuan Li, Weijia Wang, Shaojie Ma Presented by Y.X. Li

QUTLINE Introducing Transfer Matrix in Solving Laplace Equation 2/ General Properties for TMM in Multi-layer Shell 3 General use in EM Wave Propagating in Multi-layer
OUTLINE 1 Introducing Transfer Matrix in Solving Laplace Equation 2 General Properties for TMM in Multi-layer Shell 3 General use in EM Wave Propagating in Multi-layer

Introducing Transfer Matrix in Solving Laplace Equation 2/General Properties for TMM in Multi-layer Shell General use in EM Wave Propagating in Multi-layer
1 Introducing Transfer Matrix in Solving Laplace Equation 2 General Properties for TMM in Multi-layer Shell 3 General use in EM Wave Propagating in Multi-layer

INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION x Consider a series of co-central spherical shells with En, at the nth shell, and the radius between the nth and n+ 1th level is R n,n+1
INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION Consider a series of co-central spherical shells with εn , at the nth shell, and the radius between the nth and n+1th level is Rn,n+1

INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION x We see a simple example first We apply a uniform field E=Eoex, and then solve the Laplace equation in the spherical coordinate, we got solutions for the 1st order inducing field B (A, r+- n)cos 6 and boundary conditions n-1 ar O at r= R n-1
INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION We see a simple example first. We apply a uniform field E=E0ex , and then solve the Laplace equation in the spherical coordinate, we got solutions for the 1 st order inducing field and boundary conditions , at r = Rn-1,n 2 ( ) cos n n n B A r r = + n n −1 = 1 1 n n n n r r − − =

INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION x Then we would easily manifest a and b in terms of A-, and n-1 as 2+ 2-2 B A,+ 3 R 1+2 B A,R,+ n-1.n
INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION Then we would easily manifest An and Bn in terms of An-1 and Bn-1 as 1 1 1 1 1, 2 2 2 3 3 n n n n n n n n n B A A R − − − − − + − = + 1 1 1 1, 1 1 1 2 3 3 n n n n B A R B n n n n n − − − − − − + = +

INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION x and further in matrix form Q1Q12 B八(Q1Q2八Bn where 2+ 2-2 Q Q12 3 R n-1,n 1+2 R in 22
INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION and further in matrix form where 11 12 1 21 22 1 n n n n A A Q Q B B Q Q − − = 1 22 1 2 3 n n Q − + = 1 21 1, 1 3 n n Q Rn n − − − = 1 12 1, 2 2 1 3 n n n n Q R − − − = 1 11 2 3 n n Q − + =

INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION x The matrix Qn-I is called the transfer matrix for the O n-1, n th level. If at the 1st level there is a, and b,=o( to ensure converge)and at the infinite space there is A =-Eo and B multiply the transfer matrix again and again we will get E A B On_.02. 0 And surly we got the solution of a, and B, then whichever A and Bk you want could be solved by using transfer matrix
INTRODUCING TRANSFER MATRIX IN SOLVING LAPLACE EQUATION The matrix is called the transfer matrix for the n-1,n th level. If at the 1st level there is A1 and B1=0( to ensure converge) and at the infinite space there is An= -E0 and Bn , multiply the transfer matrix again and again we will get And surly we got the solution of A1 and Bn , then whichever Ak and Bk you want could be solved by using transfer matrix. 11 12 1, 21 22 n n Q Q Q Q Q − = 0 1 , 1 1, 2 2,1 ... 0 n n n n n E A Q Q Q B − − − − =

Introducing Transfer Matrix in Solving Laplace Equation 2/ General Properties for TMM in Multi-layer Shell General use in EM Wave Propagating in Multi-layer
1 Introducing Transfer Matrix in Solving Laplace Equation 2 General Properties for TMM in Multi-layer Shell 3 General use in EM Wave Propagating in Multi-layer

GENERAL PROPERTIES FOR TMM IN MULT-LAYER SHELL x We now start some general solution for general conditions, solutions to be ∑( B )P(cos0) we apply the same B. C and trick in calculation R n.n+1 R +1 n.n+1 n.n+1 R 1,n +1 +1 En(+1) B B + 1.n n+11n,n+1 En(+1)n+2 R ,n+1 n,n+1
GENERAL PROPERTIES FOR TMM IN MULTI-LAYER SHELL We now start some general solution for general conditions, solutions to be we apply the same B.C and trick in calculation 1 ( ) (cos ) l l l n n n l l l B A r P r + = + , 1 , 1 1 1 , 1 , 1 1 1 1 ! , 1 1 , 1 1 2 2 , 1 , 1 1 1 1 1 ( 1) ( 1) l l n n n n l l l l n n n n n n l l l l n n n n n n n n n n l l n n n n R R R R A A B B lR l lR l R R + + + + + + + − − + + + + + + + + + = − + − +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《电动力学》学生课堂报告_谐振腔 Discussion about resonant cavity and graphical simulation with COMSOL.ppt
- 复旦大学:《电动力学》学生课堂报告_转移矩阵研究球壳散射.ppt
- 复旦大学:《电动力学》学生课堂报告_关于复电导率虚部含义讨论.ppt
- 复旦大学:《电动力学》学生课堂报告_Polarization of EM wave after reflection.ppt
- 复旦大学:《电动力学》学生课堂报告_电偶极子势场近似公式的适用范围.ppt
- 复旦大学:《电动力学》学生课堂报告_多极矩的相关思考.ppt
- 复旦大学:《电动力学》学生课堂报告_关于格林互易定理的物理本质的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_关于色散介质中的电磁能量问题的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_关于利用Mathmatica工具数值计算并图形展现电磁场的课堂报告.pdf
- 复旦大学:《电动力学》学生课堂报告_关于利用仿真模拟研究波导的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_关于“光学黑洞那点事儿”的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_金属球上感应电荷分布的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_磁单极子的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_伦琴对电磁理论的重要贡献.pdf
- 复旦大学:《电动力学》学生课堂报告_介质的能量问题的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_Comsol计算软件普及介绍的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_电(磁)偶极子的课堂报告.ppt
- 复旦大学:《电动力学》学生课堂报告_伦琴对电磁理论贡献的课堂报告.ppt
- 《电动力学》课程参考文献:Note on group velocity and energy propagation.pdf
- 《电动力学》课程参考文献:Negative group velocity.pdf
- 复旦大学:《电动力学》学生课堂报告_转移矩阵方法和光子晶体.ppt
- 复旦大学:《电动力学》学生课堂报告_介质中磁化极化能量讨论.pdf
- 复旦大学:《电动力学》学生课堂报告_有关宏观小微观大的讨论.ppt
- 复旦大学:《电动力学》学生课堂报告_磁标势的转移矩阵方法和一点推广.pdf
- 复旦大学:《电动力学》学生课堂报告_电导率σ实部与虚部的意义对矢势A的讨论.ppt
- 复旦大学:《电动力学》学生课堂报告_橢球退極化因子的計算(均匀椭球形电介质在均匀外场中的响应).pdf
- 复旦大学:《电动力学》学生课堂报告_色散介质中的耗散与场能.pdf
- 复旦大学:《电动力学》学生课堂报告_光在水中的传播实验和Comsol模拟.ppt
- 复旦大学:《电动力学》教学课堂讲义_绪论(周磊).ppt
- 复旦大学:《电动力学》教学课堂讲义_第01讲 静电的来源 电场 电荷在电场中的受力 电场的散度,高斯定理.pdf
- 复旦大学:《电动力学》教学课堂讲义_第04讲 Maxwell 方程组 本构关系 边界条件 自由面电荷分布(奇性分布).pdf
- 复旦大学:《电动力学》教学课堂讲义_第03讲 真空中 Maxwell 方程.pdf
- 复旦大学:《电动力学》教学课堂讲义_第02讲 磁的来源 磁场 电流在磁场中的受力,Lorentz 力 磁场的矢势 磁场为无源场(与电流是否稳恒无关).pdf
- 复旦大学:《电动力学》教学课堂讲义_第05讲 能量守恒及转化 能流密度 电磁场局域能量密度 动量守恒及转化 电磁场局域动量密度,注意与能流、磁场的关系 动量流密度.pdf
- 复旦大学:《电动力学》教学课堂讲义_第06讲 介质中的电磁能量和动量守恒定律.pdf
- 复旦大学:《电动力学》教学课堂讲义_第07讲.pdf
- 复旦大学:《电动力学》教学课堂讲义_第08讲.pdf
- 复旦大学:《电动力学》教学课堂讲义_第09讲.pdf
- 复旦大学:《电动力学》教学课堂讲义_第10讲.pdf
- 复旦大学:《电动力学》教学课堂讲义_第11讲.pdf