吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 23-3-2 §2 矩阵的秩

§2 矩阵的秩 一、矩阵秩的定义 定义2在mXn矩阵A中,任取k行与列Cm, k≤n),位于这些行和列交叉处的2个元素,不改 o 变它们在A中所处的位置次序而得到的阶行列式, ·称为矩阵A的阶子式。 ●m×n矩阵A的k行与k列子式共有 CC个
§2 矩阵的秩 ⚫ 定义2 在m×n矩阵A中,任取k行与k列(k≤m, k ≤ n),位于这些行和列交叉处的k 2个元素,不改 ⚫ 变它们在A中所处的位置次序而得到的k阶行列式, ⚫ 称为矩阵A的k阶子式。 ⚫ m×n矩阵A 的k行与k列子式共有 Cm k Cn k 个。 一、矩阵秩的定义

例如 0 2 2 注意:在A中存在1阶和2阶的非零子 式,但3阶和4阶子式全部为零
例如 = 0 1 2 1 2 0 2 0 0 2 4 2 1 0 1 0 A 注意:在A中存在1阶和2阶的非零子 式,但3阶和4阶子式全部为零

定义3设在矩阵A中有一个不等于0的r阶子 式D,≠0,且所有+1阶子式(如果存在的话) 全等于零,那么D,称为矩阵A的最高阶非零子式 数r称为矩阵A的秩,记作R(A)=r。 注意显然有R(A)=R(A) 特别的规定 R(0)=0
定义3 设在矩阵A中有一个不等于0的 r 阶子 式 ,且所有r+1阶子式(如果存在的话) 全等于零,那么 称为矩阵 A 的最高阶非零子式. 数 r 称为矩阵 A 的秩,记作 。 Dr 0 Dr R(A) = r 注意 显然有 R(A ) R(A) T = 特别的规定 R(0) = 0

例1求下列矩阵的秩. 1 解在A中,容易看出:一个2阶子式 4的3阶子式只有一个4,经计算可知|A|=0,因此 R(A)=2
例1 求下列矩阵的秩. 解 在A中,容易看出:一个2阶子式 , A的3阶子式只有一个|A| ,经计算可知|A|=0 ,因此 R(A)=2. 0 2 3 1 2 1 2 3 2 3 5 4 7 1 = − A

32 B 0 解B是一个阶梯形矩阵,其非零行有3行, 故可知B的所有4阶子式全为零。而以三个非零 行的第一个非零元素为对角元的3阶行列式 2-1 3 0 3 -2≠0 因此 R (B) =3
− − − = 0 0 0 0 0 0 0 0 4 3 0 3 1 2 5 2 1 0 3 2 B 解 B是一个阶梯形矩阵,其非零行有3行, 故可知B的所有4阶子式全为零。而以三个非零 行的第一个非零元素为对角元的3阶行列式 因此 R(B)=3 2 1 3 0 3 2 0 0 0 4 − −

二、矩阵秩的相关定理 定理1若A~B,则RA)=R(B)」 证明先证明:若A经过一次初等行变换变为B, 则R(A)≤R(B). 设R(A)=r,且A的某个r阶子式D,0 r←r xk 当A~B或A心B,在B中总能找到与D,相 对应的D, 由于 D,=D,或D,=-D,或D,=kD
二、矩阵秩的相关定理 ⚫ 定理1 若A~B,则R(A)=R(B). ⚫ 证明 先证明:若A经过一次初等行变换变为B, 则R(A)≤R(B). ⚫ 设R(A)=r,且A的某个r 阶子式Dr≠0, 当 A B 或 ,在B 中总能找到与Dr 相 i j r r ~ A B r k i ~ 对应的 Dr 由于 r r Dr = Dr 或 Dr = −Dr 或 D = kD
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 22-3-1 §1 矩阵的初等变换.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 21-3-1 §1 矩阵的初等变换.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 20-2-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 19-2-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 18-2-4 §4 分块矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 17-2-4 §4 分块矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 16-2-3 §3 逆矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 15-2-3 §3 逆矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 14-2-2 §2 矩阵的运算.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 13-2-2 §2.矩阵的运算.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 12-2-1 §2.矩阵的运算.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 11-2-1 §1.矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 10-1-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 09-1-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 08-1-4 §4 克拉默法则.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 07-1-4 §4 克拉默法则.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 06-1-3 §3 行列式按行(列)展开.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 05-1-3 §3 行列式按行(列)展开.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 04-1-2 §2 行列式的性质.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第一章 行列式 03-1-2 §2 行列式的性质.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 24-3-2 §2 矩阵的秩.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 25-3-3 §3 线性方程组的解.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 26-3-3 §3 线性方程组的解.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 27-3-4 §4 初等矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 28-3-4 §4 初等矩阵.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 29-3-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换与线性方程组 30-3-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 31-4-1-2 §1 n维向量.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 32-4-1-2 §2 向量组的线性相关性.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 33-4-2-3 §2 向量组的线性相关性.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 34-4-3 §3 线性相关性的判定.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 35-4-4 §4 向量组的秩.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 36-4-4 §4 向量组的秩.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 37-4-5 §5 向量空间.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 38-4-5 §5 向量空间.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 41-4-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第四章 向量组的线性相关性 42-4-习题课.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 43-5-1 §1 向量的内积.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 44-5-1 §1 向量的内积.ppt
- 吉林大学:《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 45-5-2 §2 方阵的特征值与特征向量.ppt