《物流系统分析与优化》课程教学课件(PPT讲稿)Judgmental Forecasting

Judgmental Forecasting. Three components of a time series influence the degree of difficultythat is associated withthe judgmental forecasting task, namely:· the complexityof the underlying signal, comprising factors such as itsseasonality,cyclesandtrends,and autocorrelation;:thelevel of noisearoundthesignal; and: the stability of the underlying signal.Commonmistakes·Damping thetrend: Confusing noise with signal:Underestimationofuncertainty
Judgmental Forecasting • Three components of a time series influence the degree of difficulty that is associated with the judgmental forecasting task, namely: • the complexity of the underlying signal, comprising factors such as its seasonality, cycles and trends, and autocorrelation; • the level of noise around the signal; and • the stability of the underlying signal. • Common mistakes • Damping the trend • Confusing noise with signal • Underestimation of uncertainty

? Skill Score(MSEy)(H)E(Yi- 0,)MSEs= (H)(0- 0.)2SS=1MSEy=MSEB: Murphy's decomposition (Murphy, 1988)ss=(ro)-[ro-(]"-{-]where rxo is thecorrelation between theforecast and the observed event;sy and so are thestandard deviations of the forecast and the observed event, respectively; and Y and O are themeans of theforecastandtheobserved event.Murphycalledthesecondterm'conditionalbias.Murphycalledthethirdterm‘unconditionalbias
• Skill Score • Murphy’s decomposition (Murphy, 1988)

·3-stepdecomposition(Steward&Lusk,1994):Step1-Murphy'sdecomposition:Step2-Usethelensmodel equation (LME)tofurtherdecomposethecorrelationcomponentoftheMurphy'sdecomposition.TheLMEshowsthatthecorrelationisdeterminedbypropertiesoftheenvironmentalsystem,thecognitivesystemandtherelationsbetweenthem.·Step3-Thetwocomponents(unreliabilityofsubjectiveinterpretationofcues and unreliability of information processing)are further decomposed
• 3-step decomposition (Steward & Lusk, 1994) • Step 1 – Murphy’s decomposition • Step 2 - Use the lens model equation (LME) to further decompose the correlation component of the Murphy’s decomposition. The LME shows that the correlation is determined by properties of the environmental system, the cognitive system and the relations between them. • Step 3 – The two components (unreliability of subjective interpretation of cues and unreliability of information processing) are further decomposed

SS=Skil Score=1-(MSE/MSE,)ConditionalUnconditionalSquaredcomelation(regression)(base rate)biasbiasStep 1:(rmo)"SS=Murphy[0 -(5v/80)]"-[(Y-0)/s0]?(1988)Step 2:GSSi(RoxRyx)Tucker[ro-(sy1s0)[(Y.0)1s0](1964)Step3:ExpandedRu)"- [vo -($1s0)]"-[(Y.0)/s0]?VixGVuxSSE(Rotlensmodel0?OOOO①Components of skill:1.Environmentalpredictabity2.Fidellty of theinfomation system3.Matchbetweenenvironnentandforecaster4.Reliabilityofinfomationacquisition5.Reliabilityof infomationprocessing6.Conditiona/regressionbias7.Unconditional/base ratebias

Table I.Components of skill addressed by selected methods for improving forecastsComponent of skill"-23456MethodforimprovingforecastsxAIdentifynewdescriptorsthroughresearchxBDevelopbettermeasuresoftruedescriptorsxxxxcTrainforecasteraboutenvironmental systemxXDExperiencewithforecastingproblemECognitivefeedbackFTrainforecastertoignorenon-predictivecuesXXXGDevelopcleardefinitionsof cuesHTraining to improve cue judgmentsx1ImproveinformationdisplaysXxxxxJBootstrapping-replaceforecaster with modelKCombine several forecastsxLRequire justification of forecastsMDecomposeforecastingtaskNMechanical combination of cuesXxxxX0Statistical trainingPxFeedback about nature of biases in forecastQSearch fordiscrepant informationxRStatistical correction for bias

Feedback type:Outcomefeedback:Performancefeedback:Cognitiveprocessfeedback:Taskpropertiesfeedback
• Feedback type • Outcome feedback • Performance feedback • Cognitive process feedback • Task properties feedback

Feedback-Based Rolling Training(Petropoulos et al., 2017)·Focusonperformancefeedback,distinguishingtwotypes:feedbackonthebiasassociatedwiththeforecastssubmitted,andfeedbackontheiraccuracy·Participantsare10o5undergraduatestudents.Eachparticipantprovidedjudgmentalestimates(4-periodahead)followingbothapproaches(unaidedandafterrollingtraining),usingafullysymmetricexperiment·16quarterlyserieswereselectedmanuallyfromtheM3-Competitiondataset.Foranalysispurposes,the16seriesweresplitagainintotwosetsofequalsizeintermsof noise (lowand high).The required lengthof all series was setto28points(sevenyears),withTongerseriesbeingtruncated: 28 in-sample points and 4 out-of-sample points. For rolling training, 3 blocks of 4-periodareused (12in-samplepointsforfirstestimate).Aftercompletingeachofthelattertworounds,theparticipantsfilledinaquestionnaireforsubsequentanalysis
Feedback-Based Rolling Training (Petropoulos et al., 2017) • Focus on performance feedback, distinguishing two types: feedback on the bias associated with the forecasts submitted, and feedback on their accuracy • Participants are 105 undergraduate students. Each participant provided judgmental estimates (4-period ahead) following both approaches (unaided and after rolling training), using a fully symmetric experiment. • 16 quarterly series were selected manually from the M3-Competition data set. For analysis purposes, the 16 series were split again into two sets of equal size in terms of noise (low and high). The required length of all series was set to 28 points (seven years), with longer series being truncated. • 28 in-sample points and 4 out-of-sample points. For rolling training, 3 blocks of 4- period are used (12 in-sample points for first estimate). • After completing each of the latter two rounds, the participants filled in a questionnaire for subsequent analysis

Questionsposedtotheparticipants.QuestionsAfterbothUJand RT roundsHow confidentareyou thattheforecasts you submitted in this round,on average,wouldbewithin 10% ofthe actual values?Please,rateyour expectedforecasting performance in the series of thisroundDidyouexaminecarefullythetimeseriesgraphs?Didyoutakeintoaccountanyhistoricpatterns intheserieswhenmakingyourforecastsduringthis round?Howmuchtime(onaverage)didyouspendforeachseriesofthisround?How likely it is that takingmoretime would changeyourforecasts?AftercompletionoftheexperimentHowfamiliarareyouwithsuchforecastingexercises?Howwouldyoudescribeyourlevelofexpertise?Please,ratethe effectiveness of rolling trainingas a tool to increase youraccuracy.Please,indicatehowmotivated youwereto provideaccurateestimates

·PercentageimprovementinaccuracyMAERT100MAE,=ZPmedian(%)二MAED·Majorfindings.Overall,theRTapproach results in statisticallysignificant betterforecastingperformances(3.78%performancegain):RTresultsinimprovementsforseriesbothwithhighnoise(5.18%)andwhenlongerhorizonsareexamined(4.17%):Biasfeedbackdemonstratesthemostsignificantimprovements(4.89%overall)whiletheimprovementsforaccuracyfeedbackaregenerallysmallerandnotconsistent.·RTleadsparticipantstobemorecautious.Theforecastingperformancesachievedwithboth UJand RT areassociated withthetimethattheparticipants reportedspendinginproducingtheforecasts
• Percentage improvement in accuracy • Major findings • Overall, the RT approach results in statistically significant better forecasting performances (3.78% performance gain). • RT results in improvements for series both with high noise (5.18%) and when longer horizons are examined (4.17%). • Bias feedback demonstrates the most significant improvements (4.89% overall), while the improvements for accuracy feedback are generally smaller and not consistent. • RT leads participants to be more cautious. The forecasting performances achieved with both UJ and RT are associated with the time that the participants reported spending in producing the forecasts

Judgmental Hierarchical Forecasting(Kremeret al.,2016)? Forecast directly on aggregate data vs. summing up indirectly fromlower-levelforecasts·Lowlevel demand series arenonstationaryand correlated· Subjects: undergraduate, graduate, and professional·One-period aheadforecast·Conclusions:.Whetherbottom-upor direct-topforecasting is advantageous fromajudgmentalforecastingperspectivedependstoalargedegreeontheunderlying correlation structureat the lower level
Judgmental Hierarchical Forecasting (Kremer et al., 2016) • Forecast directly on aggregate data vs. summing up indirectly from lower-level forecasts • Low level demand series are nonstationary and correlated • Subjects: undergraduate, graduate, and professional • One-period ahead forecast • Conclusions: • Whether bottom-up or direct-top forecasting is advantageous from a judgmental forecasting perspective depends to a large degree on the underlying correlation structure at the lower level
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Bullwhip Effect.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)ACO-TS for VRPTW.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Trucking Scheduling in Container Terminals.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Quay Crane Scheduling.pptx
- 《物流系统分析与优化》课程教学课件(讲稿)Global Optimization Genetic Algorithms.pdf
- 《物流系统分析与优化》课程教学大纲 Logistics System Analysis and Optimization.pdf
- 《生产质量控制》课程教学课件(PPT讲稿)CH1 Introduciton Product Design and Development.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH3 Opportunity Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH4 Product Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH2 Development Processes and Organizations.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH5 Identifying Customer Needs.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH9 Concept Testing.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH8 Concept Selection.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH6 Product Specifications.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH7 Concept Generation.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH10 Product Architecture.pptx
- 《生产质量控制》课程教学课件(PPT讲稿)CH11 Industrial Design.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH13 Prototyping.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH12 Design for Manufacturing.ppt
- 《政治经济学》课程教学资源(文献资料)中英文词汇对照表.doc
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Ant Colony Optimization(ACO)and Real Version ACOR.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Forecasting Methods For Seaonal Series.ppt
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Data-based Forecasting.ppt
- 《国际营销管理》课程教学课件(PPT讲稿)第二讲 公司战略与营销战略——合作建立客户关系.ppt
- 《供应链系统设计与管理》课程教学大纲 Designing and managing the Supply Chain system(研究生).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第10章 产品与供应链的协调设计.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第8章 采购外包战略.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第11章 服务供应链管理(introduction to service supply chain management).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第9章 供应链风险管理.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第6章 供应链集成化.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第7章 供应链战略联盟.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第5章 牛鞭效应(bullwhip effect).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第4章 供应契约(supply contracts).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第1章. 供应链管理概述 Introduction to supply chain Management(SCM).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第3章 供应链网络规划.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第2章 库存管理与风险分担.pdf
- 《供应链系统设计与管理》课程教学资源(案例)11.1 联想绿色供应链管理案例.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.2 outsourcing and its risk Boeing 787 Case.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.1 韩都衣舍的QR -供应链风险管理案例.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.3 日本大地震暴露全球供应链风险.pdf