《物流系统分析与优化》课程教学课件(PPT讲稿)Ant Colony Optimization(ACO)and Real Version ACOR

Ant Colony Optimization (ACO)and Real Version ACO
Ant Colony Optimization (ACO) and Real Version ACOR

ACOM. Dorigo et al. (1999)Antalgorithms- inspired by the observation of real ant colonies-An important and interesting behavior of antcolonies is their foraging behavior, and, inparticular, how ants can find the shortest pathsbetween food sources and their nest
ACO • M. Dorigo et al. (1999) • Ant algorithms – inspired by the observation of real ant colonies – An important and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can find the shortest paths between food sources and their nest

While walkingfromfood sources to thenestand vice versa, ants deposit on the ground asubstance called pheromone, forming in thisway a pheromone trail. Ants can smellpheromone, and when choosing their way,they tend to choose, in probability, pathsmarked by strong pheromone concentrations.The pheromone trail allows the ants to findtheir way back to the food source (or to thenest)
• While walking from food sources to the nest and vice versa, ants deposit on the ground a substance called pheromone, forming in this way a pheromone trail. Ants can smell pheromone, and when choosing their way, they tend to choose, in probability, paths marked by strong pheromone concentrations. The pheromone trail allows the ants to find their way back to the food source (or to the nest)

15cmUpperBranchNestFoodLowerBranch(a)

-%Passagesupperbranch-%Passageslowerbranch10075BREEEEdJE50250051015252030Time (minutes)(b)

ForagingForagingareaareaNestNest(b)(a)

%otexperiments040602080100+1+0-20LE20-40TEAUOEBLAREOEDL40-60SILE60-80T>e80-100(c)

. ldeas stem from real ants with the use of(a) a colony of cooperating individuals(b) an (artificial) pheromone trail for localstigmergetic communication,(c) a sequence of local moves to find shortest paths(d) a stochastic decision policy using localinformation and no lookahead
• Ideas stem from real ants with the use of (a) a colony of cooperating individuals (b) an (artificial) pheromone trail for local stigmergetic communication, (c) a sequence of local moves to find shortest paths, (d) a stochastic decision policy using local information and no lookahead

Characteristics not found in real ants- Artificial antsliveina discrete world andtheirmoves consist oftransitions from discrete statesto discrete states-Artificial antshaveaninternal state.Thisprivatestatecontainsthememory of the ants'past actions.-Artifcial antsdeposit anamountof pheromone thatisafunctionof the qualityof thesolutionfound.- Artifcial ants'timing in pheromone laying is problem dependentandoftendoes notreflect realants'behavior.Forexample,inmany cases artificialants update pheromone trails only afterhaving generated a solution.-Toimproveoverallsystemefficiency,AcOalgorithmscanbeenrichedwithextra capabilities suchaslookahead,localoptimization,backtracking,and so onthat cannotbefound inreal ants
• Characteristics not found in real ants – Artificial ants live in a discrete world and their moves consist of transitions from discrete states to discrete states. – Artificial ants have an internal state. This private state contains the memory of the ants’ past actions. – Artifcial ants deposit an amount of pheromone that is a function of the quality of the solution found. – Artifcial ants’ timing in pheromone laying is problem dependent and often does not reflect real ants’ behavior. For example, in many cases artificial ants update pheromone trails only after having generated a solution. – To improve overall system efficiency, ACO algorithms can be enriched with extra capabilities such as lookahead, local optimization, backtracking, and so on that cannot be found in real ants

Acois aconstructivealgorithm and it constructsasolution stochastically based on the pheromoneinformation, and problem dependent heuristicinformation.Thepheromoneinformationmustberepresentedinaform appropriate for the problem.The pheromoneinformation will be updated dynamically during thesearch process to simulate realants'foraging behavior.Theproblemdependentheuristicinformationisnotavailable inrealantsbutoften addedinartificialantstohelpsolveaproblemmoreeffectively
• ACO is a constructive algorithm and it constructs a solution stochastically based on the pheromone information, and problem dependent heuristic information. • The pheromone information must be represented in a form appropriate for the problem. The pheromone information will be updated dynamically during the search process to simulate real ants’ foraging behavior. • The problem dependent heuristic information is not available in real ants but often added in artificial ants to help solve a problem more effectively
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Judgmental Forecasting.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Bullwhip Effect.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)ACO-TS for VRPTW.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Trucking Scheduling in Container Terminals.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Quay Crane Scheduling.pptx
- 《物流系统分析与优化》课程教学课件(讲稿)Global Optimization Genetic Algorithms.pdf
- 《物流系统分析与优化》课程教学大纲 Logistics System Analysis and Optimization.pdf
- 《生产质量控制》课程教学课件(PPT讲稿)CH1 Introduciton Product Design and Development.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH3 Opportunity Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH4 Product Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH2 Development Processes and Organizations.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH5 Identifying Customer Needs.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH9 Concept Testing.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH8 Concept Selection.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH6 Product Specifications.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH7 Concept Generation.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH10 Product Architecture.pptx
- 《生产质量控制》课程教学课件(PPT讲稿)CH11 Industrial Design.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH13 Prototyping.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH12 Design for Manufacturing.ppt
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Forecasting Methods For Seaonal Series.ppt
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Data-based Forecasting.ppt
- 《国际营销管理》课程教学课件(PPT讲稿)第二讲 公司战略与营销战略——合作建立客户关系.ppt
- 《供应链系统设计与管理》课程教学大纲 Designing and managing the Supply Chain system(研究生).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第10章 产品与供应链的协调设计.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第8章 采购外包战略.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第11章 服务供应链管理(introduction to service supply chain management).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第9章 供应链风险管理.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第6章 供应链集成化.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第7章 供应链战略联盟.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第5章 牛鞭效应(bullwhip effect).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第4章 供应契约(supply contracts).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第1章. 供应链管理概述 Introduction to supply chain Management(SCM).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第3章 供应链网络规划.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第2章 库存管理与风险分担.pdf
- 《供应链系统设计与管理》课程教学资源(案例)11.1 联想绿色供应链管理案例.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.2 outsourcing and its risk Boeing 787 Case.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.1 韩都衣舍的QR -供应链风险管理案例.pdf
- 《供应链系统设计与管理》课程教学资源(案例)10.3 日本大地震暴露全球供应链风险.pdf
- 《供应链系统设计与管理》课程教学资源(案例)9.1 采购与外包风险案例- 波音787梦幻客机的问题.pdf