《物流系统分析与优化》课程教学课件(讲稿)Global Optimization Genetic Algorithms

Global OptimizationGenetic AlgorithmsOlesyaPeshko
1 Global Optimization Genetic Algorithms Olesya Peshko

OutlineEvolution in biologyAlgorithmProsandconsApplicationsExampleSoftwareMatlabtoolboxes2
2 Outline z Evolution in biology z Algorithm z Pros and cons z Applications z Example z Software z Matlab toolboxes

EvolutioninBiologyArchean3Imagefromhttp://www.geo.au.dk/besoegsservice/foredrag/evolution
3 Evolution in Biology Image from http://www.geo.au.dk/besoegsservice/foredrag/evolution

EvolutioninBiologyIOrganismsproduceanumberofoffspringsimilartothemselves but can have variations due to:Mutations(randomchanges)Sexualreproduction(offspringhavecombinationsoffeaturesinheritedfromeachparent)十Imagesadaptedfromhttp://www.wpclipart.com
4 Evolution in Biology I z Organisms produce a number of offspring similar to themselves but can have variations due to: – Mutations (random changes) – Sexual reproduction (offspring have combinations of features inherited from each parent) Images adapted from http://www.wpclipart.com

Evolution inBiology IlSomeoffspringsurvive,andproducenextgenerations, and some don't:The organisms adapted to theenvironment betterhavehigherchancetosurviveOver time, the generations become more and more adaptedbecausethefittestorganismssurvive5Imagesadaptedfromhttp://www.wpclipart.com
5 Evolution in Biology II z Some offspring survive, and produce next generations, and some don’t: – The organisms adapted to the environment better have higher chance to survive – Over time, the generations become more and more adapted because the fittest organisms survive Images adapted from http://www.wpclipart.com

TheGeneticAlgorithms6Imagefromhttp://www.genetic-programming.org
6 The Genetic Algorithms Image from http://www.genetic-programming.org

The Genetic Algorithms (GA)Based onthemechanics of biological evolutionInitially developed by John Holland, University ofMichigan(1970s)Tounderstandprocessesinnatural systemsTodesignartificialsystemsretainingtherobustnessandadaptationpropertiesofnaturalsystemsHolland's original GAis known as the simple geneticalgorithm (SGA)Provideefficienttechniques for optimizationandmachine learningapplicationsWidely used inbusiness, scienceandengineering7Imageadaptedfromhttp:/today.mun.ca/news.php?news_id=2376
7 The Genetic Algorithms (GA) z Based on the mechanics of biological evolution z Initially developed by John Holland, University of Michigan (1970’s) – To understand processes in natural systems – To design artificial systems retaining the robustness and adaptation properties of natural systems z Holland’s original GA is known as the simple genetic algorithm (SGA) z Provide efficient techniques for optimization and machine learning applications z Widely used in business, science and engineering Image adapted from http://today.mun.ca/news.php?news_id=2376

GeneticAlgorithms TechniquesGAs areaparticularclassof evolutionaryalgorithmsThetechniquescommontoallGAsare:InheritanceMutationSelectionCrossover(alsocalledrecombination)GAs arebest used when the objective functionis:DiscontinuousHighlynonlinearStochastic-Has unreliable orundefinedderivatives8
8 Genetic Algorithms Techniques z GAs are a particular class of evolutionary algorithms. The techniques common to all GAs are: – Inheritance – Mutation – Selection – Crossover (also called recombination) z GAs are best used when the objective function is: – Discontinuous – Highly nonlinear – Stochastic – Has unreliable or undefined derivatives

PerformanceGAscanprovidesolutionsforhighlycomplexsearchspacesGAsperformwell approximatingsolutionstoalltypesofproblemsbecausetheydonotmakeanyassumptionaboutthe underlyingfitnesslandscape(theshape of the fitness function, or objectivefunction)However,GAscanbeoutperformedbymorefieldspecificalgorithms9
9 Performance z GAs can provide solutions for highly complex search spaces z GAs perform well approximating solutions to all types of problems because they do not make any assumption about the underlying fitness landscape (the shape of the fitness function, or objective function) z However, GAs can be outperformed by more fieldspecific algorithms

Biological Terminology Gene - a single encoding of part of thesolution space,i.e.either single bits orshortblocks of adjacentbitsthatencodeanelement of thecandidate solution1Chromosome - a string of genes thatrepresents a solutionOPopulation-thenumberofchromosomesavailabletotest10
10 Biological Terminology z Gene – a single encoding of part of the solution space, i.e. either single bits or short blocks of adjacent bits that encode an element of the candidate solution z Chromosome – a string of genes that represents a solution z Population – the number of chromosomes available to test 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《物流系统分析与优化》课程教学大纲 Logistics System Analysis and Optimization.pdf
- 《生产质量控制》课程教学课件(PPT讲稿)CH1 Introduciton Product Design and Development.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH3 Opportunity Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH4 Product Planning.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH2 Development Processes and Organizations.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH5 Identifying Customer Needs.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH9 Concept Testing.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH8 Concept Selection.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH6 Product Specifications.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH7 Concept Generation.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH10 Product Architecture.pptx
- 《生产质量控制》课程教学课件(PPT讲稿)CH11 Industrial Design.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH13 Prototyping.ppt
- 《生产质量控制》课程教学课件(PPT讲稿)CH12 Design for Manufacturing.ppt
- 《政治经济学》课程教学资源(文献资料)中英文词汇对照表.doc
- 《政治经济学》课程教学资源(作业习题)政治经济学总习题集(无答案).doc
- 《商务谈判》课课程教学大纲.pdf
- 《商务谈判》课程教学资源(PPT课件,完整讲稿,共八章).ppt
- 《运筹学》课程教学资源(试卷习题)第3章 线性规划的对偶理论.ppt
- 《运筹学》课程教学资源(试卷习题)第2章 线性规划.ppt
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Quay Crane Scheduling.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Trucking Scheduling in Container Terminals.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)ACO-TS for VRPTW.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Bullwhip Effect.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Judgmental Forecasting.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Ant Colony Optimization(ACO)and Real Version ACOR.pptx
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Forecasting Methods For Seaonal Series.ppt
- 《物流系统分析与优化》课程教学课件(PPT讲稿)Data-based Forecasting.ppt
- 《国际营销管理》课程教学课件(PPT讲稿)第二讲 公司战略与营销战略——合作建立客户关系.ppt
- 《供应链系统设计与管理》课程教学大纲 Designing and managing the Supply Chain system(研究生).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第10章 产品与供应链的协调设计.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第8章 采购外包战略.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第11章 服务供应链管理(introduction to service supply chain management).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第9章 供应链风险管理.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第6章 供应链集成化.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第7章 供应链战略联盟.pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第5章 牛鞭效应(bullwhip effect).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第4章 供应契约(supply contracts).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第1章. 供应链管理概述 Introduction to supply chain Management(SCM).pdf
- 《供应链系统设计与管理》课程授课教案(讲义,研究生)第3章 供应链网络规划.pdf