中国高校课件下载中心 》 教学资源 》 大学文库

南京大学:《大学物理》课程教学资源(PPT讲座)Plamonics and Metamaterials(李涛)

文档信息
资源类别:文库
文档格式:PDF
文档页数:80
文件大小:7.09MB
团购合买:点击进入团购
内容简介
Concepts Basic principles Surface Plasmon SPP at flat metal surfaces Optical excitation of SPP Localized Surface plasmon (LSP) Application of SPP Metamaterial Artificial Magnetism Negative Index Material (NIM) Transformation Optics Illumination Optics Summary
刷新页面文档预览

版象 Nanjing University Plasmonics and Metamaterial Tao Li taoli@nju.edu.cn Nat.Lab.of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University Tao Li Š taoli@ j n u.edu.cn Š Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Nanjing University Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University 2 Outline Concepts Basic principles Surface pPlasmon Metamaterial Summary Dielectric Superlatice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University y C t oncep s y Basic principles y Surface Plasmon y Metamaterial y Summary Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

版象 Nanjing University Optical Properties Light in Condensed Matters Condensed Matter Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University Light Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University Concepts Plasmonics SOLID,LIQUID,GAS PLASMA atom or decoupled positive and molecule negative charges I free electron gas 1 1 metal Positive charge background Jellium model I I I Collective oscillation of free elctrons>quanta h I 1 Plasmonics Plasmon Dielectric Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University + SOLID, LIQUID, GAS PLASMA - + - + - - + atom or molecule decoupled positive and negative charges + - Positive charge background free electron gas metal Jellium model Collective oscillation of free elctronsÆ quanta hωq Plasmonics Plasmon Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University Concepts Metamaterial METAMATERIAL SOLID,CYSTAL atom artificial atom Notice: >This artificial material (atom)is not exist naturally! “meta'”i迟“beyond'" >The property is with respect to the EM wave, so a key point is the unit cell is sub-wavelength. Light cannot“see”the structure Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University METAMATERIAL SOLID, CYSTAL atom artificial atom Notice: ¾This artificial material (atom) is not exist naturally! “meta” is “beyond” ¾Th t i ith t t th EM The property is with respect to the EM wave, so a key point is the unit cell is sub-wavelength. Light cannot “see” the structure Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn Light cannot see the structure

版象 Nanjing University Outline Concepts Basic principles ●Surface Plasmon ●Metamaterial ●Summary Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University y C t oncep s y Basic principles y Surface Plasmon y Metamaterial y Summary Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University Basic Principle Objective: Electromagneitcs of Metals V.D=p 0=86,E 8=6(0) aB 8t B=44,月 L=I(⊙) 7.B=0 j=cE @=@(k) v×i=j/+ aD 8t Field distribution:E and H Media response:and u Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University Objective: Electromagneitcs of Metals ⎪⎧∇ ⋅ D = f r ρ ⎧D E r r ( ) Objective: Electromagneitcs of Metals ⎪⎪⎪⎪⎨ ∂∂ ∇ × = − ∇ tB ED f r r ρ 00 D E B H εεμμ ⎧ = ⎪⎪⎨ = r r ( ) ( ) ε ε ω μ μ ω == ⎪⎪⎪ ⎪⎨ ∂ ∇ ⋅ = ∂ D B t r r 0 0 j E μμ σ ⎨⎪⎪ = ⎩ r r ( ) ( ) k μ μ ω ω= ⎪⎪⎩ ∂∂ ∇ × = + tD H j f r r ‹ Field distribution: E and H Field distribution: E and H ‹ Media response: ε and μ Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

Nanjing University Basic Principle Commonly,magnetic response is neglected for the optical material u=1 Electric part can be described by D(r,t)=8o[dt'dr's(r-r',t-1)E(r',t) J(r,t)=[dt'dr'a(r-r',t-t')E(r',t') Taking Fourier Transformation D(K,0)=6(K,o)E(K,o) J(K,0)=σ(K,⊙)E(K,o) Fourier domain of k-@space Dielectrie Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University Commonly, magnetic response is neglected for the optical material μ = 1 Electric part can be described by 0 ( , ) ' ( , ') ( , ') ( ) ' ( ') ( ') t dt d t t t d d = −− ε ε ∫ ∫ D r r' r r' E r' J ' ' E' ( , t) '( = dt d σ − − , tt t ') ( , ') ∫ J r r' r r' E r' Taking Fourier Transformation 0 ( , ) ( , )( , ) ( ) ( )( ) ω εε ω ω ωσ ω ω = = DK K EK JK K EK JK K EK ( ,ωσ ω ω ) ( = , ) ( , ) Fourier domain of k-ω space Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn Fourier domain of k-ω space

Nanjing University Basic Principle P According to Equations D=E+P,J= Ot We get the dielectric function of metal 8(K.@)-1+io(K.@) 8o0 For a spatially local response,(K=0,)=( From wave equation VxXE= o"D K-c(K) Generic dispersion relation Dielectric Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University According to Equations ε ∂ =+ = P According to Equations D EP J We get the dielectric function of metal 0 , t =+ = ε ∂ D EP J 0 (,) (,)1 iσ ω ε ω ε ω = + K K 0 For a spatially local response, ε ( 0, ) ( ) K = = ω εω 2 ∂ D From wave equation 0 2 t μ ∂ ∇ ×∇× = − ∂ D E 2 2 ω 2 K (,) c ω = ε K ω Generic dispersion relation Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn Generic dispersion relation

Nanjing University Basic Principle Dielectric function of free electron gas We have dynamic equation of an electron of plasma sea in an external E field mx+myx=-eE Plasma frequency e x(t)= E() 2 Ne2 m(@2+iyo) (o)=1- +iyo Eomo ne2 P=- E m(o2+iyo) (o)=1- D=61- )E If neglecting the loss @-+iy@ Drude Model o2=o6+K2c2 Dispersion of volume plasmons Dielectric Superlattice Laboratory Nat.Lab.Microstructures Dr.Tao Li taoli@nju.edu.cn

Nanjing University Dielectric function of free electron gas W h d i ti f l t f l i mm e && & x xE + γ = − We have dynamic equation of an electron of plasma sea in an external E field Plasma frequency 2 2 () () ( ) e t t m i ω γω = + x E 2 2 () 1 Pi ω ε ω ω γω = − + 2 2 0 0 p N em ω ε = 2 2 2 ( ) ne m i ω γω = − + P E 2 2 () 1 P ω γωi ω ε ω ω + = − 2 0 2 (1 ) Pi ω ε ω γω = − + D E Drude Model ω If neglecting the loss 2 2 22 ω ω= +P K c Dispersion of volume plasmons Dielectric Superlattice Laboratory Nat. Lab. Microstructures Dr. Tao Li taoli@nju.edu.cn

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档