《结构动力学》课程教学课件(讲稿)18 Distributed-parameter systems(Analysis of undamped free vibration)

Wuhan University of TechnologyChapter18Analysis of undamped free vibration18-1
18-1 Wuhan University of Technology Chapter 18 Analysis of undamped free vibration

Wuhan University of TechnologyContents18.1Beamflexure:elementary case18.2 Beam flexure: including axial-force effects18.3Beamflexure:with distributedelastic support18.4 Beam flexure: orthogonality of vibration mode shapes18.5Freevibrationsinaxialdeformation18.6 Orthogonality of axial vibration modes18-2
18-2 Wuhan University of Technology 18.1 Beam flexure: elementary case 18.2 Beam flexure: including axial-force effects 18.3 Beam flexure: with distributed elastic support 18.4 Beam flexure: orthogonality of vibration mode shapes 18.5 Free vibrations in axial deformation 18.6 Orthogonality of axial vibration modes Contents

Wuhan Universityof Technology18.1 Beam flexure: elementary caseFirst,letusconsidertheelementarycasepresentedinSection172withEI(x)and m(x) set equal to constants EI and m, respectively. As shown by Eq. (177)thefreevibration equationof motionforthissystemis04v(r,t)a2v(c,t)EI0m0r4Ot2min(r,t)+Ei(,t)=0v(c,t)=o(c)Y(t)ms() (t) + 晋 (a) (t) = 018-3
18-3 Wuhan University of Technology 18.1 Beam flexure: elementary case First, let us consider the elementary case presented in Section 172 with EI(x) and m(x) set equal to constants EI and , respectively. As shown by Eq. (177), the freevibration equation of motion for this system is

Wuhan Universityof Technology-18.1 Beam flexure: elementary casemY(t)si(c)EIY(t)o(a)Becausethefirstterminthisequationisafunctionofxonlyandthesecondterm is a function of t only, the entire equation can be satisfied for arbitraryvaluesofxandtonlyif eachtermisaconstant inaccordancewithY(t)msiv(r)2EIY(t)d(r)wherethesingleconstantinvolvedisdesignatedintheforma4forlatermathematical convenience.ThiseguationyieldstwoordinarydifferentialequationsY(t) +w2Y(t) =0gi(a)-a40(c)=0a4EIi.e.EIm18-4
18-4 Wuhan University of Technology 18.1 Beam flexure: elementary case Because the first term in this equation is a function of x only and the second term is a function of t only, the entire equation can be satisfied for arbitrary values of x and t only if each term is a constant in accordance with where the single constant involved is designated in the form a 4 for later mathematical convenience. This equation yields two ordinary differential equations

Wuhan University of Technology-18.1 Beam flexure: elementary caseThe first of these [Eq. (187a)] is the familiar freevibration expression for anundampedSDOFsystemhavingthesolution[seeEq.(231)]Y(t)=Acoswt+B sinwtinwhichconstantsAandBdependupontheinitialdisplacementandvelocityconditions, i.e.,Y(0)Y(t) = Y (O) cos wt +sinwtwThesecond equationcanbesolvedintheusualwaybyintroducingasolutionoftheformd(c) = G exp(sr)(s4 - a4) G exp(sr) = 018-5
18-5 Wuhan University of Technology 18.1 Beam flexure: elementary case The first of these [Eq. (187a)] is the familiar freevibration expression for an undamped SDOF system having the solution [see Eq. (231)] in which constants A and B depend upon the initial displacement and velocity conditions, i.e., The second equation can be solved in the usual way by introducing a solution of the form

Wuhan University of Technology18.1 Beam flexure: elementary caseS3,4 =±aS1,2=±iaIncorporatingeachoftheserootsintoEq.(1811)separatelyandaddingtheresultingfourterms,oneobtainsthecompletesolutionΦ(r) =G1 exp(iar) + G2 exp(-iar) + G3 exp(ar) +G4 exp(-ar)o(r)=Aicosar+A2sinar+A3coshar+A4sinhaawhere A,Az,A3, and Ay are real constants which can be expressed in terms ofthe components of Gi, G2, G3, and G4. These real constants must be evaluatedsoastosatisfytheknownboundaryconditions(displacement,slope,momentorshear)attheendsofthebeam.18-6
18-6 Wuhan University of Technology 18.1 Beam flexure: elementary case Incorporating each of these roots into Eq. (1811) separately and adding the resulting four terms, one obtains the complete solution where A1, A 2, A 3, and A 4 are real constants which can be expressed in terms of the components of G1, G 2, G 3, and G 4. These real constants must be evaluated so as to satisfy the known boundary conditions (displacement, slope, moment, or shear) at the ends of the beam

Wuhan University of Technology18.1 Beam flexure: elementary caseto(x)xEI,m=constantsL(a)E(01=元mL401(t) =sin 元xLEI02=4元mL42元x02(x)=sinLEI03=9元mL3元(x)=sinL(b)18-7
18-7 Wuhan University of Technology 18.1 Beam flexure: elementary case

Wuhan University of Technology-18.1 Beam flexure: elementary caseExampleE181.SimpleBeamConsideringtheuniformsimplebeamshowninFigE181a,itsfourknownboundaryconditionsareb(0) = 0M(0) = EI @"(0) = 0Φ(L) = 0M(L)= EI"(L) =0Makinguseof Eq.(1815)and itssecondpartial derivativewith respecttox,Eqs.(a) can be written asΦ(O)=A1 cos0+A2 sin0+A3 cosh0+A4 sinh0= 0@"(0) = α2 (-A1 cos 0 - A2 sin0+ A3 cosh 0 + A4 sinh 0) = 018-8
18-8 Wuhan University of Technology Example E181. Simple Beam Considering the uniform simple beam shown in Fig. E181a, its four known boundary conditions are 18.1 Beam flexure: elementary case Making use of Eq. (1815) and its second partial derivative with respect to x, Eqs. (a) can be written as

Wuhan University of Technology-18.1 Beam flexure: elementary case(A1 +A3) = 0(-A1 + A3) = 0A1 = A3 = 0.Similarly, Eqs. (b) can be written in the formo(L)=A2 sinaL+A4 sinhaL=0d"(L)= a2 (-A2 sinaL + A4 sinhaL) = 02A4sinhaL=0(r) = A2 sinac18-9
18-9 Wuhan University of Technology 18.1 Beam flexure: elementary case Similarly, Eqs. (b) can be written in the form

Wuhan Universityof Technology18.1 Beam flexure: elementary caseA2 = 0. Φ(L) = 0sinaL=0which is the systemfrequency equation:it requiresthata=/Ln=0.1.2,..SubstitutingthisexpressionintoEg.(188)andtakingthesquarerootofbothsidesyieldthefrequencyexpressionEIWn=n2?㎡L4nTdn(α) = A2 sinn=1.2aL18-10
18-10 Wuhan University of Technology 18.1 Beam flexure: elementary case which is the system frequency equation: it requires that Substituting this expression into Eq. (188) and taking the square root of both sides yield the frequency expression
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《结构动力学》课程教学课件(讲稿)01 Overview of structural dynamics(1/2).pdf
- 《结构动力学》课程教学课件(讲稿)01 Overview of structural dynamics(2/2).pdf
- 《结构动力学》课程教学课件(讲稿)03 Response to harmonic loading.pdf
- 《结构动力学》课程教学课件(讲稿)05 Response to impulsive loading.pdf
- 《结构动力学》课程教学课件(讲稿)04 Response to periodic loading.pdf
- 《结构动力学》课程教学课件(讲稿)02 Analysis of free vibration.pdf
- 《结构动力学》课程教学课件(讲稿)08 Generalized SDOF systems.pdf
- 《结构动力学》课程教学课件(讲稿)07 Response to general dynamic loading(step-by-step methods).pdf
- 《结构动力学》课程教学课件(讲稿)06 Response to general dynamic loading(superposition methods).pdf
- 《结构动力学》课程教学课件(讲稿)09 Formulation of the MODF equations of motion.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第十一章 结构顺风向随机风振响应 Alongwind random vibration response of structure.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第十章 脉动风的概率特性 Probabilistic Characteristic of fluctuating wind.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第九章 平均风的概率计算 Probabilistic Calculation of mean wind.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第八章 大气边界层的平均风特性 characteristics of mean wind in the atmospheric boundary layer.pdf
- 《结构防灾技术》课程教学课件(讲稿)第七章 爆炸灾害及防爆技术 Explosion hazards and explosion protection technology.pdf
- 《结构防灾技术》课程教学课件(讲稿)第六章 结构防火技术 Fire-resistance Structure.pdf
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第五章 结构主动减震控制 Active structural vibration control.pdf
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第四章 结构被动调谐减震技术 Structural passive tuned vibration control.pdf
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第三章 消能减震结构设计 Seismic Energy-Dissipated Structure.pdf
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第二章 隔振结构设计 Design of isolation Structures.pdf
- 《结构动力学》课程教学课件(讲稿)16 Variational formulation of the equations of motion.pdf
- 《结构动力学》课程教学课件(讲稿)19 Distributed-parameter systems(Analysis of dynamic response).pdf
- 《结构动力学》课程教学课件(讲稿)17 Distributed-parameter systems(Partial differential equations of motion).pdf
- 《结构动力学》课程教学课件(讲稿)14 Selection of dynamic degrees of freedom.pdf
- 《结构动力学》课程教学课件(讲稿)15 Analysis of MDOF dynamic response(step-by-step methods).pdf
- 《结构动力学》课程教学课件(讲稿)13 Vibration analysis by matrix iteration.pdf
- 《结构动力学》课程教学课件(讲稿)12 Analysis of dynamic response using superposition.pdf
- 《结构动力学》课程教学课件(讲稿)11 Multi-degree-of-freedom systems(MDOF)Undamped free vibrations.pdf
- 《结构动力学》课程教学课件(讲稿)10 Evaluation of structural-property matrices.pdf
- 枣庄学院:《土木工程测试技术》课程实验指导书.pdf
- 枣庄学院:《土力学及混凝土基本构件实验》课程实验指导书.pdf
- 枣庄学院:《土木工程测试技术》课程实验指导书.pdf
- 枣庄学院:《土木工程材料实验》课程指导书.pdf
- 枣庄学院:《土力学及混凝土基本构件实验》课程教学大纲.pdf
- 枣庄学院:《土木工程材料实验》课程教学大纲 Experiment of Civil Engineering Materials.pdf