《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第三章 消能减震结构设计 Seismic Energy-Dissipated Structure

第3章消能减震结构Chapter 3 Seismic Energy-Dissipated Structure3.1消能减震结构概述Overview of Seismic Energy-Dissipated Structure3.2 消能减震结构原理Principles of Seismic Energy-Dissipated Structure3.3消能减震结构体系设计方法Design of Seismic Energy-Dissipated Structure
第3章 消能减震结构 Chapter 3 Seismic Energy-Dissipated Structure 3.1 消能减震结构概述 Overview of Seismic Energy-Dissipated Structure 3.2 消能减震结构原理 Principles of Seismic Energy-Dissipated Structure 3.3 消能减震结构体系设计方法 Design of Seismic Energy-Dissipated Structure

3.1结构消能减震概述Overview of Seismic energy-dissipated structure3.1.1结构消能减震的基本概念Basic concept of energy dissipationEEp-E.Es-E.结构破坏消能装置耗能Es耗能ED(a)地震输入(e)消能减结构(b)传统抗袋结构传统结构Conventionalstructure(3.1.1)Ein=Er+Ep+Es消能减震结构energy-dissipated structure(3.1.2)Ein=Er+Ep+Es+EA
3.1 结构消能减震概述 Overview of Seismic energy-dissipated structure 3.1.1 结构消能减震的基本概念 Basic concept of energy dissipation 传统结构 Conventional structure Ein=ER+ED+ES (3.1.1) 消能减震结构 energy-dissipated structure Ein=ER+ED+ES+EA (3.1.2)

Ein:地震输入的能量;Input energy of earthquakeER:结构地震反应能量,包括动能和势能。seismic response energy of structure including kineticand potential energyEp:结构阻尼消耗的能量。Energydissipatedbystructural dampingEs:结构构件或非结构构件非弹性变形消耗的能量Energy dissipated by inelastic deformation of structuralornon-structuralelementsEA:耗能装置消耗的能量Energy dissipated by supplemental energy-dissipatingdevice
Ein :地震输入的能量; Input energy of earthquake ER:结构地震反应能量,包括动能和势能。 seismic response energy of structure including kinetic and potential energy ED:结构阻尼消耗的能量。 Energy dissipated by structural damping ES:结构构件或非结构构件非弹性变形消耗的能量 Energy dissipated by inelastic deformation of structural or non-structural elements EA:耗能装置消耗的能量 Energy dissipated by supplemental energy-dissipating device

Ep结构阻尼耗能很小(5%),要使E减小到零,即地震反终止,Es必然很大,即以结构破坏为代价。而减震结构是将地震能量由耗能装置消散。Generally Energy dissipated by structural damping (Ep) islimited about 5 percent. To reduce E to zero, Es must belarge, that is, reducing the structural dynamic responsehave to pay the price of structural damage or destroyWhile in energy-dissipated structures, earthquake energywas consumed by the energy-dissipating devices
ED 结构阻尼耗能很小(5%),要使 ER 减小到零,即地震反 终止,ES 必然很大,即以结构破坏为代价。而减震结构是将 地震能量由耗能装置消散。 Generally Energy dissipated by structural damping (ED ) is limited about 5 percent. To reduce ER to zero, ES must be large, that is, reducing the structural dynamic response have to pay the price of structural damage or destroy. While in energy-dissipated structures, earthquake energy was consumed by the energy-dissipating devices

energy-dissipated structureBesides the isolation structure, another approach toimprovedearthquakeresponseperformanceanddamage control is that of supplemental dampingsystems, which is called energy-dissipated structuresystem. In these systems, mechanical devices areincorporated in the frame of the structure and dissipateenergy throughout the height of the structure. Themeans by which energy is dissipated is either yielding ofmild steel, sliding friction, motion of a piston within aviscous fluid, orificing of fluid, or viscoelastic action inpolymeric materials
energy-dissipated structure Besides the isolation structure, another approach to improved earthquake response performance and damage control is that of supplemental damping systems, which is called energy-dissipated structure system. In these systems, mechanical devices are incorporated in the frame of the structure and dissipate energy throughout the height of the structure. The means by which energy is dissipated is either yielding of mild steel, sliding friction, motion of a piston within a viscous fluid, orificing of fluid, or viscoelastic action in polymeric materials

3.1.2结构消能减震的优越性及应用范围The advantages and application of energy -dissipatedstructuresadvantages(1)安全性:地震反应减小40-60%Safety: earthquake response reduced by 40% to 60%(2)经济性:节约造价5-10%economy: cost saved by 5% to 10%(3)技术合理性technicalrationality
3.1.2 结构消能减震的优越性及应用范围 The advantages and application of energy – dissipated structures advantages (1)安全性 :地震反应减小40-60% Safety: earthquake response reduced by 40% to 60% (2)经济性 :节约造价5-10% economy: cost saved by 5% to 10% (3)技术合理性 technical rationality

3.1.2结构消能减震的优越性及应用范围The advantages and application of energy-dissipationstructuresapplication(1)高层建筑,超高层建筑;High-rise building, super high-rise building(2)高柔结构,高箕塔架;High and flexible structure, High-rise tower(3)柔性管道、管线(生命线工程);Flexible pipelines and wires (lifeline project)(5)旧有高柔建筑或结构物的抗震(或抗风)性能的改善提高。the improvement of seismic and wind-resisting ability ofexisted high and flexible buildings
3.1.2 结构消能减震的优越性及应用范围 The advantages and application of energy-dissipation structures application (1)高层建筑,超高层建筑; High-rise building, super high-rise building (2)高柔结构,高耸塔架; High and flexible structure, High-rise tower (3)柔性管道、管线(生命线工程); Flexible pipelines and wires (lifeline project) (5)旧有高柔建筑或结构物的抗震(或抗风)性能的改善提高。 the improvement of seismic and wind-resisting ability of existed high and flexible buildings

3.1.3结构消能减震体系的分类和构造Types and configuration of energy-Dissipated system消能支撑消能剪力墙按构件形式消能节点消能联结消能支承或悬吊构件消能减震结构(或装置)摩擦消能钢件非弹性变形消能按消能形式材料塑性变形消能材料粘弹性消能液体阻尼消能混合式消能
3.1.3 结构消能减震体系的分类和构造 Types and configuration of energy-Dissipated system

消能构件的不同构造形式Different types of energy-dissipating components(1)消能支撑energy-dissipatingbracing消能方框消能方柜消能圆柜消能装置消能装置屈服消能区消能装置(a)方框支撑(b)圆支撑(c)交叉支撑(d)斜撑支撑(e)K形支撑
消能构件的不同构造形式 Different types of energy-dissipating components (1)消能支撑 energy-dissipating bracing

钢材受弯屈服型消能支撑yieldingsteelbracingsystem这种支撑体系,具有结构在一般使用情况下所要求的侧向刚度,能代替一般交叉支撑或剪力墙。又具有较高的减震消能能力和抗低周疲劳破坏的能力,在多次反复荷载作用下,不失稳,不断裂,保持稳定的承载力和消能能力。其荷载一位移滞回曲线包络图面积非常稳定和饱满,与交叉杆钢支撑相比,阻尼比增大5倍以上。This type of bracing can replace ordinary cross-bracing orshear walls, has the required lateral stiffness under normalservice. It also has high energy-dissipating and anti-fatigue destroy capacity; stability capacity, not fracturingand sustaina stablebearingcapacity under multipletimesof cyclic loads. Its load - displacement hysteretic loop isvery stable and plump, whose damping ratio is 5 times aslarge as that of the cross-bar steel bracing
钢材受弯屈服型消能支撑 yielding steel bracing system 这种支撑体系,具有结构在一般使用情况下所要求的侧向刚度,能代替 一般交叉支撑或剪力墙。又具有较高的减震消能能力和抗低周疲劳破坏 的能力,在多次反复荷载作用下,不失稳,不断裂,保持稳定的承载力 和消能能力。其荷载—位移滞回曲线包络图面积非常稳定和饱满,与交 叉杆钢支撑相比,阻尼比增大5倍以上。 This type of bracing can replace ordinary cross-bracing or shear walls, has the required lateral stiffness under normal service. It also has high energy-dissipating and antifatigue destroy capacity; stability capacity, not fracturing and sustain a stable bearing capacity under multiple times of cyclic loads. Its load - displacement hysteretic loop is very stable and plump, whose damping ratio is 5 times as large as that of the cross-bar steel bracing
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第二章 隔振结构设计 Design of isolation Structures.pdf
- 《结构防灾技术》课程教学课件(讲稿)第一章 绪论 structural disaster prevention and mitigation technology(earthquake, fire, explosion and wind).pdf
- 《结构防灾技术》课程教学大纲 structural disaster-mitigation technology(earthquake, fire, explosion and wind).docx
- 《钢筋混凝土结构》课程教学资源(知识讲解)钢筋混凝土结构课程思考题.doc
- 《钢筋混凝土结构》课程教学资源(知识讲解)钢筋混凝土结构课程常见问题.doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第08次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第08次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第07次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第07次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第06次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第06次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第05次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第05次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第04次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第04次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第03次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第03次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第02次(答案).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第02次(题目).doc
- 《钢筋混凝土结构》课程教学资源(试卷习题)模拟试题第01次(答案).doc
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第四章 结构被动调谐减震技术 Structural passive tuned vibration control.pdf
- 《结构防灾技术》课程教学课件(讲稿)第二篇 结构减震技术 Structural Vibration Control Technology 第五章 结构主动减震控制 Active structural vibration control.pdf
- 《结构防灾技术》课程教学课件(讲稿)第六章 结构防火技术 Fire-resistance Structure.pdf
- 《结构防灾技术》课程教学课件(讲稿)第七章 爆炸灾害及防爆技术 Explosion hazards and explosion protection technology.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第八章 大气边界层的平均风特性 characteristics of mean wind in the atmospheric boundary layer.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第九章 平均风的概率计算 Probabilistic Calculation of mean wind.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第十章 脉动风的概率特性 Probabilistic Characteristic of fluctuating wind.pdf
- 《结构防灾技术》课程教学课件(讲稿)第三篇 结构抗风 Wind-resistant structure 第十一章 结构顺风向随机风振响应 Alongwind random vibration response of structure.pdf
- 《结构动力学》课程教学课件(讲稿)09 Formulation of the MODF equations of motion.pdf
- 《结构动力学》课程教学课件(讲稿)06 Response to general dynamic loading(superposition methods).pdf
- 《结构动力学》课程教学课件(讲稿)07 Response to general dynamic loading(step-by-step methods).pdf
- 《结构动力学》课程教学课件(讲稿)08 Generalized SDOF systems.pdf
- 《结构动力学》课程教学课件(讲稿)02 Analysis of free vibration.pdf
- 《结构动力学》课程教学课件(讲稿)04 Response to periodic loading.pdf
- 《结构动力学》课程教学课件(讲稿)05 Response to impulsive loading.pdf
- 《结构动力学》课程教学课件(讲稿)03 Response to harmonic loading.pdf
- 《结构动力学》课程教学课件(讲稿)01 Overview of structural dynamics(2/2).pdf
- 《结构动力学》课程教学课件(讲稿)01 Overview of structural dynamics(1/2).pdf
- 《结构动力学》课程教学课件(讲稿)18 Distributed-parameter systems(Analysis of undamped free vibration).pdf
- 《结构动力学》课程教学课件(讲稿)16 Variational formulation of the equations of motion.pdf