西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 20 Magnetic Forces and Magnetic Field

UNIVERSITY PHYSICS II CHAPTER 20 Magnetic Forces and Magnetic Flel 820.1 The magnetic field and its application 1. The magnetic field and its features Gravitational field FG = mg -gravitational force caused by mass Electric field Fe=gE electric force caused by electric charge Magnetic field-- While the magnetic field has similarities to the other fields, it also has some unique features that distinguish it from the others
1 1. The magnetic field and its features While the magnetic field has similarities to the other fields, it also has some unique features that distinguish it from the others. Gravitational field —gravitational force caused by mass Electric field —electric force caused by electric charge Magnetic field--? F mg r r G = F qE r r e = §20.1 The magnetic field and its application

820.1 The magnetic field and its application @Magnets and magnetic poles: Unlike poles attract each other, like poles repel each other The magnetic forces of attraction and repulsion of magnetic poles on each other are similar to the electrical force interactions between electric charges, but they are not at all the same thing. with magnets, no magnetic monopoles ever have been discovered 820.1 The magnetic field and its application It is impossible to isolated either a north or a south magnetic pole hence we say that magnets and the magnetic field always are dipolar Magnetic poles always occur in north-south pairs that produce a dipolar magnetic field B in the surrounding space
2 §20.1 The magnetic field and its application 1Magnets and magnetic poles: Unlike poles attract each other, like poles repel each other. The magnetic forces of attraction and repulsion of magnetic poles on each other are similar to the electrical force interactions between electric charges, but they are not at all the same thing. With magnets, no magnetic monopoles ever have been discovered. It is impossible to isolated either a north or a south magnetic pole; hence we say that magnets and the magnetic field always are dipolar. Magnetic poles always occur in north-south pairs that produce a dipolar magnetic field in the surrounding space. B r §20.1 The magnetic field and its application

820.1 The magnetic field and its application ② magnetic field lines The direction of the magnetic field at any point is tangent to the field line at that point; The number density of the magnetic field lines in a region is a measure of the magnitude of the magnetic field there. 820.1 The magnetic field and its application Othe differences of the magnetic field and the electric field (A charge q placed at rest magnetic field experiences zero force (i)Move the charge along a magnetic field line, the moving charge again experiences zero force; (ii)If the charge is moved at speed v at angle 0 with the direction of a uniform magneti field. a nonzero magnetic force exists on the charge. The force depends on both the speed and the direction of the velocity
3 2magnetic field lines The direction of the magnetic field at any point is tangent to the field line at that point; The number density of the magnetic field lines in a region is a measure of the magnitude of the magnetic field there. §20.1 The magnetic field and its application 3the differences of the magnetic field and the electric field (i)A charge q placed at rest magnetic field experiences zero force; (ii)Move the charge along a magnetic field line, the moving charge again experiences zero force; (iii)If the charge is moved at speed v at angle θ with the direction of a uniform magnetic field, a nonzero magnetic force exists on the charge. The force depends on both the speed and the direction of the velocity. §20.1 The magnetic field and its application

820.1 The magnetic field and its application iv The magnetic force varies with the magnitude of the magnetic field B(as determined from the number of the magnetic field lines): vThe direction of the force on g depends on the sign of the moving charge. In every case the force is perpendicular to both the velocity of the charge and the field direction qv×B The si unit of magnetic field: 1 tesla(T)=104 gauss 820.1 The magnetic field and its application 2. applications A velocity selector/J Fm=φ×B=gn6q B F=¢E=-E v=vi88888oE Fe= qE=gvoB E ν>v,Fm> Fe deflect up B ν<v,Fn< f. deflect down v, depends only on the magnitude of the field vo is independent of the identical charge; Vo is independent of the mass of the particle
4 (iv)The magnetic force varies with the magnitude of the magnetic field B (as determined from the number of the magnetic field lines); (v)The direction of the force on q depends on the sign of the moving charge. In every case the force is perpendicular to both the velocity of the charge and the field direction. F qv B r r r m = × The SI unit of magnetic field: 1 tesla(T)=104 gauss §20.1 The magnetic field and its application 1 A velocity selector F qE qEj F qv B qv Bj ˆ ˆ e m 0 = = − = × = r r r r r B E v qE qv B F F = = + = 0 0 m e 0 r r 0 m e 0 m e , , v v F F v v F F > deflect up deflect down depends only on the magnitude of the field; is independent of the identical charge; is independent of the mass of the particle. 0 v 0 v 0 v 2. Applications + + + + + + − − − − − − ⊗ ⊗ ⊗ ⊗ ⊗ q v v i ˆ = 0 r E r x y ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ B r §20.1 The magnetic field and its application

820.1 The magnetic field and its application ② A mass spectrometer Fn=qv×B F=ma B= R mmV R the speed by B a velocity selector If the beam is composed of the ions of different isotopes of the same element, all with the same charge, each isotope moves in a circle with a different radius 820.1 The magnetic field and its application te hall effect B= Bk negative x××××x cha <> V=-L Positive charge v=L
5 2 A mass spectrometer q B mv R R v q vB m F ma F qv B = = = = × 2 m r r r If the beam is composed of the ions of different isotopes of the same element, all with the same charge, each isotope moves in a circle with a different radius. Choose the speed by a velocity selector §20.1 The magnetic field and its application 3 The Hall effect B Bk ˆ = r v v i ˆ = r Positive charge v v i ˆ =− r negative charge Fm r Fm r Fm r Fe r Fe r r r r i ˆ j ˆ i ˆ j ˆ I I I I I I §20.1 The magnetic field and its application

820.1 The magnetic field and its application (negative charge carriers Fm=gixB=(a)i)x Bk=-a Bj F=(-0)(-E)=E (positive charge carriers Fm=vxB=a(v>i)xBk=-aBj F=qEj=gej Equilibrium state:aE=aB E≤B 820.1 The magnetic field and its application ④ Hall voltage V2-1=∫E==一E let V=v-v=El=Bl B T=nga <> nqe Hall Bl= hB1B「q>0,vmn>0 ngA ngd 1q<0,Hall <0 6
6 (i)negative charge carriers F q Ej q Ej F qv B q v i Bk q v Bj ˆ )ˆ ( )( ˆ ˆ )ˆ ( )( e m = − − = = × = − − × = − r r r r F q Ej q Ej F qv B q v i Bk q v Bj ˆ ˆ ˆ ˆ )ˆ ( e m = = = × = × = − r r r r (ii)positive charge carriers Equilibrium state: E v B q E q v B = = §20.1 The magnetic field and its application 4 Hall voltage V V E r E y El l l B A B − A = − ⋅ = − ⋅ = − ∫ ∫− 2 2 j ˆ j d ˆ d r r nqA I v I nqA v = = nqd IB nqA IlB VHall = Bl = = 0, 0 0, 0 Hall Hall > q V q V x y z B r • • • • • • • • • • • • • • • B A l d A − + + + + + − − − − − v I r q §20.1 The magnetic field and its application V V V El v Bl let Hall = A − B = =

820.1 The magnetic field and its application 5 discovery of the electron and the ratio of mass and charge of electron Thomson’ s experiment B Screen 1 gE L e m BL 2 m B 9 2DE 820.1 The magnetic field and its application 6 magnetic focus. magnetic mirror and magnetic bottle F=qvB=欣 R R The radius of the circular motion X my R= B The period of the circular motion 2 2T 2 q/b It is independent v
7 5 discovery of the electron and the ratio of mass and charge of electron —Thomson’s experiment yE B L q m B E v v L m qE y 2 , 2 1 2 2 2 2 = = ⇒ = §20.1 The magnetic field and its application 6 magnetic focus, magnetic mirror and magnetic bottle R v F q vB m 2 m = = q B mv R = The radius of the circular motion ××××× ××××× × × × ×× ××××× R v r m B r §20.1 The magnetic field and its application q B m v R T 2π 2π = = The period of the circular motion It is independent v

820.1 The magnetic field and its application The radius of the helical motion n y sIn R=2上 B gb The screw--pitch B h= Ty,= 27m y COS gB For small o 274 h B D 820.1 The magnetic field and its application The magnetic focus a)量象管电子束磁聚焦原理图 b)电子束运动截面投影图 TThe magnetic mirror 8
8 φ π cos 2 // v qB m h = Tv = The screw--pitch For small φ v qB m h 2π ≈ qB mv qB mv R sinφ = = ⊥ The radius of the helical motion φ v r // v r ⊥ v r B r h q v r B r r §20.1 The magnetic field and its application The magnetic focus The magnetic mirror §20.1 The magnetic field and its application

820.1 The magnetic field and its application Magnetic bottle B -Particle Spiral path 820.1 The magnetic field and its application The Van Allen radiation belts and aurora Electron path d lines north pole Auroral oval
9 Magnetic bottle §20.1 The magnetic field and its application The Van Allen radiation belts and aurora §20.1 The magnetic field and its application

Aurora 820.1 The magnetic field and its application OThe cyclotron Dee R B 2R2元m T v aB Beam\ Can this process Deflector persist infinitely? plate Oscillator 10
10 Aurora 7The cyclotron q B mv R = q B m v R T 2π 2π = = §20.1 The magnetic field and its application Can this process persist infinitely?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《晶体光学》第六章 透明矿物的系统鉴定.ppt
- 《晶体光学》第四章 正交偏光镜间的晶体光学性质.ppt
- 《晶体光学》第五章 锥光镜下的晶体光学性质.ppt
- 《晶体光学》第三章 单偏光镜下的晶体光学性质.ppt
- 《晶体光学》第二章 偏光显微镜.ppt
- 《晶体光学》第一章 晶体光学基础.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第21章 熵.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)期末复习.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第21章 熵 §20.2 克劳修斯熵公式 热力学第三定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第20章 热力学第一定律和第二定律 §20.4 热力学第二定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)习题课热力学第一定律及其应用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第20章 热力学第一定律和第二定律 §20.3 循环过程 卡诺循环.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第20章 热力学第一定律和第二定律 §20.1 热力学基本概念 §20.2 热力学第一定律及其应用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第19章 近独立粒子体系的统计规律 §19.2 近独立子系的三种统计规律(了解)§19.3 M-B 统计在理想气体中的应用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第六篇 多粒子体系的热运动 第19章 近独立粒子体系的统计规律 §19.1 统计方法的一般概念.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 量子现象和量子规律 第18章 量子力学应用简介 §18.1 原子结构的量子理论.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 量子现象和量子规律 第18章 量子力学应用简介 §18.3 宏观量子现象 超导和超流(了解).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 量子现象和量子规律 第18章 量子力学应用简介 §18.2 固体能带理论基础.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 量子现象和量子规律 第17章 量子力学的基本原理 §17.2 不确定关系(续)§17.3 波函数 薛定谔方程.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五篇 量子现象和量子规律 第17章 量子力学的基本原理 §17.1 物质波假设及其实验验证 §17.2 不确定关系.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 21 Faraday's Law and Electromagnetic Induction.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 25 the speclal theory of relativity.pdf
- 《激光原理与技术》课程教学资源(PPT课件讲稿,完整版,共九章).ppt
- 《物理学中的数学方法》PDF电子书.pdf
- 《高分子物理》课程教学资源(PPT讲稿,英文版)SPM Application in Polymer Material.ppt
- 《高分子物理》课程教学资源(PPT讲稿,英文版)Introduction to Atomic Force Microscopy Yanchun Han.ppt
- 《高分子物理》课程教学资源(PPT讲稿,英文版)Application of Atomic Force Microscopy for Polymers.ppt
- 北京大学:《电磁学》课程教学资源(PPT课件)第三章 电磁感应——恒定电流.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第三章 电磁感应——电源电动势.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第三章 电磁感应——电磁感应定律.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第三章 电磁感应——动生和感生.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第三章 电磁感应——自感与互感.pps
- 北京大学:《电磁学》课程教学资源(习题讲义)讨论题.doc
- 西华大学:《大学物理》课程教学资源(习题)质点运动学.doc
- 西华大学:《大学物理》课程教学资源(PPT课件讲稿)绪论(力学篇,主讲:杜泉).ppt
- 西华大学:《大学物理》课程教学资源(习题)牛顿运动定律.doc
- 西华大学:《大学物理》课程教学资源(习题)飞行过程中的阻力.doc
- 西华大学:《大学物理》课程教学资源(习题)功与能和能量守恒.doc
- 西华大学:《大学物理》课程教学资源(习题)刚体转动和角动量守恒.doc
- 西华大学:《大学物理》课程教学资源(习题)惯性系对物理基本规律.doc