上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9 Free Convection

HEAT TRANSFER CHAPTER 9 Free Convection 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 9 Free Convection

Natural Convection Where we’ ve been ·。 Up to now, have considered basic concepts of natural convection, the governing equations and laminar free convection on vertical surface Where were going Consider empirical correlations for natural convection Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 Natural Convection Where we’ve been …… • Up to now, have considered basic concepts of natural convection, the governing equations and laminar free convection on vertical surface. Where we’re going: • Consider empirical correlations for natural convection

Empirical Correlations Typical correlations for heat transfer coefficient developed from experimental data are expressed as hl CRa L k L RO G 8B(T,-T)L3 AL=ori 1/4 For T n=1/3 For L Rayleigh number Vertical plate For an plate at constant Ts Coordinales or recommended curve 1 ⊥.9 2.63 3.89 6.03 0.5 Logo NuL, 1.5 33.1 108 14 501.0 11 1.0 .2 Log1o rar Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 Empirical Correlations • Typical correlations for heat transfer coefficient developed from experimental data are expressed as: Vertical Plate For an plate at constant Ts ( ) 3 Pr g T T L Ra Gr s L L − = = Log10RaL Log10NuL n L CRaL k hL Nu = = Rayleigh number = = 1/ 3 1/ 4 n n For T For L

Empirical Correlations(Contd Vertical Plate(Contd Alternative applicable to entire Rayleigh number range(for constant Ts) 0.387Ra16 E 0.825+ 9/68/27 9.26 +(0.492/Pr) Vertical cylinders Use same correlations for vertical flat plate f D≈35 ≥ 1/4 L Inclined plate 7 See figure 9.7 d Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 Empirical Correlations (Cont’d) Vertical Plate (Cont’d) • Alternative applicable to entire Rayleigh number range (for constant Ts) Vertical Cylinders • Use same correlations for vertical flat plate if: Inclined Plate 2 8/ 27 9/16 1/ 6 1 (0.492/ Pr) 0.387 0.825 + = + L L Ra Nu 1/ 4 ~ 35 GrL L D Eq 9.26 See Figure 9.7

Empirical Correlations(Contd Horizontal plate Cold plate Plate, T, (ST Plate, T Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 Empirical Correlations (Cont’d) Horizontal Plate Cold Plate (Ts T)

Empirical Correlations(Contd Horizontal Plate( contd Define the characteristic length, L as L P Upper surface of heated plate, or Lower surface of cooled plate: N=0.54Ra 104≤Rar≤10 0.15Ra 1/3 L 0′≤Rar≤10 Lower surface of heated plate, or Upper surface of cooled plate: Nu1=0.27Ra14(05≤Ra,≤100 Note Use fluid roperties at the pI T+t filmtemperature Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Empirical Correlations (Cont’d) Horizontal Plate (Cont’d) • Define the characteristic length, L as • Upper surface of heated plate, or Lower surface of cooled plate : • Lower surface of heated plate, or Upper surface of cooled plate : ( ) ( ) 1/3 7 11 1/ 4 4 7 0.15 10 10 0.54 10 10 = = L L L L L L Nu Ra Ra Nu Ra Ra ( ) 1/ 4 5 10 NuL = 0.27 RaL 10 RaL 10 Note: Use fluid properties at the film temperature 2 + = T T T s f P A L s

Empirical Correlations(Contd ong Horizontal Cylinder Very common geometry(pipes, wires) For isothermal cylinder surface, use general Plume form equation for computing nusselt E hD 9.33 =CRa k Boundary Constants for general lay Nusselt number equation Rap 10-10-10 2 0.6750.058 Table9.110-2-10 02 0.148 102-10 0.8500.188 0.4800.250 0 0.1250.333 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 Empirical Correlations (Cont’d) Long Horizontal Cylinder • Very common geometry (pipes, wires) • For isothermal cylinder surface, use general form equation for computing Nusselt # • Constants for general Nusselt number equation RaD C n 10 -10 0.125 0.333 10 -10 0.480 0.250 10 -10 0.850 0.188 10 -10 1.02 0.148 10 -10 0.675 0.058 7 12 4 7 2 4 2 2 10 2 − + − − Table 9.1 Eq 9.33 n D CRaD k hD Nu = =

Example: Heated Wire Given Coil of wire in an electrical resistance baseboard heater assume that the wire can be treated as a horizontal cylinder Wire is 1 mm in diameter T=120°C T=20C Find: Heat loss to room per unit length of wire USing air properties at a film temperature of T+t =709 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 Example: Heated Wire Given: • Coil of wire in an electrical resistance baseboard heater • Assume that the wire can be treated as a horizontal cylinder • Wire is 1 mm in diameter Find: • Heat loss to room per unit length of wire Using air properties at a film temperature of ºC 120 C Ts = 20 C T = 70 2 = + = T T T s f

Example: Heated Wire At a rayleigh of Compute Nusselt# and convection coefficient TD hD CRap k Rate of heat transfer to air is q=hD(Ts-Too) W/m of length Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 Example: Heated Wire • At a Rayleigh # of : C = , n= Compute Nusselt # and convection coefficient Rate of heat transfer to air is: q = hD(Ts -T ) W/m of length ( ) 3 g T T D Ra s D − = n D CRaD k hD Nu = =

Example: Determine the average convection heat transfer coefficient for the 2. 5-m high vertical walls of a home having respective interior air and wall surface temperature of(a)20 and 10C and (b)27 and 37C KNOWN: Interior air and wall temperatures; wall height. FIND:(a) Average heat transfer coefficient when T=20'C and Ts =10C, (b) Average heat transfer coefficient when Too=27C and Ts =37'C SCHEMATIC A、 Wall height 3 L-257 =20 G=27℃ a win nTer condITion 6 Summer condition ASSUMPTIONS:(a) Wall is at a uniform temperature, (b) Room air is quiescent. mk=005Wm.=209×10mr010(30K1amn==3279 62 10°K,v=16539×10mk=20027Wx=22820m=076 ANALYSIS: The appropriate correlation for the average heat transfer coefficient for free convection Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Example: Determine the average convection heat transfer coefficient for the 2.5-m high vertical walls of a home having respective interior air and wall surface temperature of (a) 20 and 10 ºC and (b) 27 and 37 ºC
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 22 定态方程的积分形式.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 21 变分法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 20 简并微扰论.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 19 定态近似方法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 18 两费米子体系的自旋波函数.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 17 空间反演不变性与宇称守恒.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 16 对称性.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 15 两个角动量耦合.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 14 自旋.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 13 角动量的一般性质.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 12 代数解法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 11 粒子在中心场中的运动.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 10 一维方势阱.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 9 一维束缚态问题.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 8 力学量.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 7 不确定关系.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 6 力学量的测量几率.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 5 厄米算符.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 4 线性变换.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 3 物质粒子的波动性.pdf
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11 Heat Exchangers.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)Final Review.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)recall-fluid mechanics1.ppt
- 《电磁学》第9章 磁场中的磁介质.ppt
- 《电磁学》第10章 电磁感应.ppt
- 《电磁学》第11章 麦克斯韦方程组和电磁辐射.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第一章 对称性与对称破缺 第一节 对称性和对称性原理 第二节 对称性与守恒定律 第三节 对称性的自发破缺.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第一节 基本粒子及其相互作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第三节 宇宙.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第一节 能量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述 第二节 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第三节 角动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章 机械振动和机械波 第一节 简谐振动.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第一节 简谐振动(2/2)第二节 弹性系统的振动(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律.ppt