上海交通大学:《传热学》课程PPT教学课件(英文版)recall-fluid mechanics1

HEAT TRANSFER Recall: fluid mechanics 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER Recall: Fluid Mechanics

What is Convective Heat Transfer? You have already experienced it. Difficulty lies in generalizing our experience; filtering it down to a few laws: learning how to apply these laws to systems we engineers design and use Here is what i want you to do: If a person masters the fundamentals ofhis subject and has learned to think and work independently, he will surely find his way and besides will better be able to adapt himselfto progress and changes than the person whose training principally consists in the acquiring of detailed knowledge. Albert einstein So. please read ahead and come prepared with good questions for the class. Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 What is Convective Heat Transfer? ─ You have already experienced it. ─ Difficulty lies in generalizing our experience; filtering it down to a few laws; learning how to apply these laws to systems we engineers design and use. ─ Here is what I want you to do: ─ If a person masters the fundamentals of his subject and has learned to think and work independently, he will surely find his way and besides will better be able to adapt himself to progress and changes than the person whose training principally consists in the acquiring of detailed knowledge. ─ – Albert Einstein ─ So, please read ahead and come prepared with good questions for the class

1. Introduction to DIMENSIONAL ANALYSIS Dimensions Each quantitative aspect provides a number and a unit F or example =5m/s The three basic dimensions are l. t and m Alternatively, L, T, and F could be used We can write F÷LT F三MLT The notation is used to indicate dimensional equality Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 1. Introduction to DIMENSIONAL ANALYSIS 1) Dimensions Each quantitative aspect provides a number and a unit. For example, The three basic dimensions are L, T, and M. Alternatively, L, T, and F could be used. We can write The notation is used to indicate dimensional equality. V = 5m/s 2 1 − − = = F MLT V LT =

2) Dimensional homogeneity Fundamental premise All theoretically derived equations are dimensionally homogeneous----that is, the dimensions of the left side of the equation must be the same as those on the right side and all additive separate terms must have the same dimensions For example, the velocity equation 0 +at In terms of dimensions the equation is LT=lt+lt ----dimensional homogeneous Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 2) Dimensional homogeneity Fundamental premise: All theoretically derived equations are dimensionally homogeneous----that is, the dimensions of the left side of the equation must be the same as those on the right side, and all additive separate terms must have the same dimensions. For example, the velocity equation, In terms of dimensions the equation is ----dimensional homogeneous −1 −1 −1 LT = LT + LT V =V + at 0

3)Dimensional analysis A problem An incompressible. Newtonian fluid steady flow, through a long, smooth-walled, horizontal circular pipe \P,=f(D, p, u, r) The nature of function is unknown and the experiments are necessary We can recollect these variables into dimensionless products DAp OVD oV2 Variables from 5 to 2 #5 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 p f (D V ) l = , ,, 3) Dimensional analysis A problem. An incompressible, Newtonian fluid, steady flow, through a long, smooth-walled, horizontal, circular pipe. The nature of function is unknown and the experiments are necessary. We can recollect these variables into dimensionless products, Variables from 5 to 2. = VD V D pl 2

Here D△ L(F/L (FL T)L7)2 FLTO pVD. (FL T(LT )L F 0r00 The results will be independent of the system of units This type of analysis is called -o---dimensional analysis Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Here, The results will be independent of the system of units. This type of analysis is called -----dimensional analysis. 0 0 0 2 4 2 1 0 0 0 4 2 1 2 3 2 ( ) ( )( ) ( )( ) ( / ) F L T FL T VD FL T LT L F L T FL T LT L F L V D pl = = = = − − − − −

4)Buckingham Pi theorem If an equation involving k variables is dimensionally homogeneous it can be reduced to a relationship among k-r independent dimensionless products, where r is the minimum number of reference dimensions required to describe the variables Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 4) Buckingham Pi theorem If an equation involving k variables is dimensionally homogeneous, it can be reduced to a relationship among k-r independent dimensionless products, where r is the minimum number of reference dimensions required to describe the variables

Here we use the symbol ii to represent a dimensionless product For equation f(u 2:35 We can rearrange to I1=(2,2,→) Usually, the reference dimensions required to describe the variables will be the basic dimensions m.l. and t or f.l. andt In some cases, maybe only two are required, or just one determination of pi terms??? Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 Here, we use the symbol to represent a dimensionless product. For equation, We can rearrange to, ( ) k u f u ,u ,...,u 1 = 2 3 ( ) = k−r , ,..., 1 2 3 Usually, the reference dimensions required to describe the variables will be the basic dimensions M, L, and T or F, L, and T. In some cases, maybe only two are required, or just one. determination of Pi terms???

2. The Navier-Stokes Equations Combine the differential equations of motion. the stress-deformation relationships and the continuity equation u0=-+/+八 ouou ou +i-+v-+ at Ox ay az a at a—aa y av a2 +-+v—+1 c厂=+/8,+(ax=++a +i-+v-+W 8 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 2. The Navier-Stokes Equations Combine the differential equations of motion, the stress-deformation relationships and the continuity equation. + + + + = − + + + + + + + = − + + + + + + + = − + + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z w y w x w g z p z w w y w v x w u t w z v y v x v g y p z v w y v v x v u t v z u y u x u g x p z u w y u v x u u t u z y x

Here, four unknowns(u, V, W, p. We know the conservation of mass equation, +— --four equations Nonlinear, second order, partial differential equations #10 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Here, four unknowns (u, v, w, p.) We know the conservation of mass equation, ----------four equations. Nonlinear, second order, partial differential equations. = 0 + + z w y v x u
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《传热学》课程PPT教学课件(英文版)Final Review.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11 Heat Exchangers.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9 Free Convection.ppt
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 22 定态方程的积分形式.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 21 变分法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 20 简并微扰论.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 19 定态近似方法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 18 两费米子体系的自旋波函数.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 17 空间反演不变性与宇称守恒.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 16 对称性.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 15 两个角动量耦合.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 14 自旋.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 13 角动量的一般性质.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 12 代数解法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 11 粒子在中心场中的运动.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 10 一维方势阱.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 9 一维束缚态问题.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 8 力学量.pdf
- 《电磁学》第9章 磁场中的磁介质.ppt
- 《电磁学》第10章 电磁感应.ppt
- 《电磁学》第11章 麦克斯韦方程组和电磁辐射.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第一章 对称性与对称破缺 第一节 对称性和对称性原理 第二节 对称性与守恒定律 第三节 对称性的自发破缺.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第一节 基本粒子及其相互作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第三节 宇宙.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第一节 能量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述 第二节 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第三节 角动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章 机械振动和机械波 第一节 简谐振动.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第一节 简谐振动(2/2)第二节 弹性系统的振动(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(1/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第三篇 相对论和时空 第六章 狭义相对论 第一节 力学相对性原理、伽利略变换 第二节 狭义相对论的基本原理、洛仑兹变换 第三节 狭义相对论时空观.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)西南交通大学:《大学物理》第三篇 相对论和时空 第六章 狭义相对论 第三节 狭义相对论时空观.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)西南交通大学:《大学物理》第三篇 相对论和时空 第六章 狭义相对论 第四节 狭义相对论力学基础.ppt