上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11 Heat Exchangers

HEAT TRANSFER CHAPTER 11 Heat Exchangers 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 11 Heat Exchangers

Heat Exchangers. NTU-8 Method Where we’ ve been∴ Analysis of heat exchangers using log mean temperature difference (LMTD) q=y ATour -At i UA△TLMD Tr △T △T △D Where were going Computation of heat exchanger performance compared to the theoretical maximum possible for the flow conditions and hX type and size Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 Heat Exchangers, NTU- Method Where we’ve been …… • Analysis of heat exchangers using log mean temperature difference (LMTD) Where we’re going: • Computation of heat exchanger performance compared to the theoretical maximum possible for the flow conditions and HX type and size. LMTD i o out in UA T T T T T q UA = − = ln dq Ti To h dTc dT T

Heat Exchangers. NTU-8 Method KEY POINTS THIS LECTURE Concept of heat exchanger effectiveness,& based on the ratio of fluid heat capacity, C Concept of heat exchanger Numberof Transfer Units. NTU pplication of ntU-c method to predict the performance of a given heat exchanger ext book sections: $11.4-11.5 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 Heat Exchangers, NTU- Method KEY POINTS THIS LECTURE • Concept of heat exchanger effectiveness, based on the ratio of fluid heat capacity, C. • Concept of heat exchanger Number of Transfer Units, NTU • Application of NTU- method to predict the performance of a given heat exchanger • Text book sections: §11.4 – 11.5

Recall earlier discussion For a condensing vapor or Ch Cond Out For an evaporating liquid (or Ch <<C Ev O What if Ch= Cc in a counterflow HX? △T1=△T Out Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 • For a condensing vapor • For an evaporating liquid • What if Ch = Cc in a counterflow HX? Recall earlier discussion ( ) or Ch Cc x T In Out x T In Out ( ) or Ch Cc x T In Out T1 = T2 TCond TEvap

Heat exchanger effectiveness Maximum possible heat transfer rate for any given inlet temperatures and flow rates occurs in a infinitely long counterflow HX c out out → C.7 Length of heat exchanger ·IfC Ch, then Tho=T Hot fluid would reach cold fuid inlet t and max Maximum△T max min(h. CI Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 Heat exchanger effectiveness • Maximum possible heat transfer rate for any given inlet temperatures and flow rates occurs in a infinitely long counterflow HX and : ( ) Cold fluid would reach hot fluid inlet T If max c h,i c,i c h c,o h,i q C T T C C , then: T T = − • = T Th,out Tc,in c out h in T T , , = Length of heat exchanger and : ( ) Hot fluid would reach cold fluid inlet T If max h h,i c,i c h h,o c,i q C T T C C , then: T T = − • = L → ( ) qmax = Cmin Th,i −Tc,i Maximum T

Heat exchanger effectiveness(Contd) Define: Heat exchangereffectiveness, 8 max Actual heat transfer, g, can be determined from simple energy balance g=qn=m,p,hIh,inIh, out g=mc c p, c (c,out SO Ch (Thi-T,ou) ccout C in Thus min OR= min If the heat exchanger effectiveness were known then the actual heat transferred could be found from max Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Heat exchanger effectiveness (Cont’d) Define: Heat exchanger effectiveness, • Actual heat transfer, q, can be determined from simple energy balance • Thus: • If the heat exchanger effectiveness were known, then the actual heat transferred could be found from: ( ) ( ) ( ) ( ) h h i n h out c c out c i n h h p h h i n h out c c p c c out c i n so q C T T C T T q q m c T T q m c T T , , , , , , , , , , : = − = − = = − = = − ( ) ( ) ( ) ( ) min , , , , min , , , , max h i c i c c o c i h i c i h h i h o C T T C T T OR C T T C T T q q − − = − − = = max q q q qmax =

Number of Transfer units Define: Numberof Transfer Units, NTU NTu UA min nTU depends on both the heat exchanger design (UA) and the operating conditions(cmin) Define: Capacity Ratio, Cr r min max Effectiveness is a function of capacity ratio and the ntu E=f(NTU, Cr) Relationships between E, nTU and Cr can be computed Tables 11.3 and 11.4 and Figures 11.14-l1.9 in textbook Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 Number of Transfer Units Define: Number of Transfer Units, NTU • NTU depends on both the heat exchanger design (UA) and the operating conditions (Cmin). Define: Capacity Ratio, Cr • Effectiveness is a function of capacity ratio and the NTU • Relationships between , NTU and Cr can be computed. Tables 11.3 and 11.4 and Figures 11.14 – 11.19 in textbook C C /C (C 1) r = min max r ( ) NTU Cr = f , Cmin UA NTU

NTU-E Tables 1.0 0.6 Parallel flow 0.2 0 2 3 5 NTU 1.0 0.8 1.0o 0.75 Counter 0.6 0.50 025 flow 0.4 0.2 3 NTU Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 NTU - Tables Parallel flow Counter flow

Summary of Solution Method Typical scenario for using E-NTU method Given: Th in, Tcin, h, mc, hX geometry Find h out Icout, q Solution method: 1. Determine UA for this heat exchanger 1. Find u and A 2. Find C.Clc 2. Calculate NTU=UA/C 3. Determine s from tabulated formulas or plots 4. Compute actual heat transfer g=8 q max mIn 5. Find outlet temperatures from T.+ q p,c Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 Summary of Solution Method • Typical scenario for using -NTU method: Given: Find: Solution method: 1. Determine UA for this heat exchanger 1. Find 2. Find 2. Calculate 3. Determine from tabulated formulas or plots 4. Compute actual heat transfer 5. Find outlet temperatures from Th,in , Tc,in , m h , m c , HX geometry Th,out , Tc,out , q ( ) q qmax Cmin Th,i Tc,i = = − m q , and m q c , , , h , , , p c c o c i p h h o h i c T T c T T = + = − Cc Ch Cr , , U and A min NTU =UA/C

Calculation Methodology Performance calculation Given: Th in, Tcin, h, mc, hX geometry Find h out Icout, q Solution method: NTU Design problems: Iven hin2 hout or Find: Tou(or Thout), g, A Solution method: lMTD Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Calculation Methodology • Performance calculation: Given: Find: Solution method: NTU • Design problems: Given: Find: Solution method: LMTD Th,in , Tc,in , m h , m c , HX geometry Th,out , Tc,out , q , , , , (or ) Th,i n Tc,i n mh mc Th,out Tc,out (or ), q, A Tc,out Th,out
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9 Free Convection.ppt
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 22 定态方程的积分形式.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 21 变分法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 20 简并微扰论.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 19 定态近似方法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 18 两费米子体系的自旋波函数.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 17 空间反演不变性与宇称守恒.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 16 对称性.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 15 两个角动量耦合.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 14 自旋.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 13 角动量的一般性质.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 12 代数解法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 11 粒子在中心场中的运动.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 10 一维方势阱.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 9 一维束缚态问题.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 8 力学量.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 7 不确定关系.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 6 力学量的测量几率.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 5 厄米算符.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 4 线性变换.pdf
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)Final Review.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)recall-fluid mechanics1.ppt
- 《电磁学》第9章 磁场中的磁介质.ppt
- 《电磁学》第10章 电磁感应.ppt
- 《电磁学》第11章 麦克斯韦方程组和电磁辐射.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第一章 对称性与对称破缺 第一节 对称性和对称性原理 第二节 对称性与守恒定律 第三节 对称性的自发破缺.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第一节 基本粒子及其相互作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第三节 宇宙.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第一节 能量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述 第二节 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第三节 角动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章 机械振动和机械波 第一节 简谐振动.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第一节 简谐振动(2/2)第二节 弹性系统的振动(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(1/2).ppt