上海交通大学:《传热学》课程PPT教学课件(英文版)Final Review

HEAT TRANSFER Final review 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER Final Review

Final review session 50 TED HAS BEEN BASED ON YOUR S0METIMES THERES A TRAINING YOU FOR WORK, ID SAY HE S FINE LINE BE TWEEN THE PAST SIX MONTHS. EI PLAYING THE WORLDS E CRIMINALLY ABUSIVE ONGEST PRACTICAL BEHAVIOR AND FUN JOKE ON YOU Copyright 9 2003 Uni ted Feature Syndicate, Inc Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 Final Review Session

Viscous flow The Navier-Stokes Equations Nonlinear, second order, partial differential equations au auau au a-u auau +l+y-+ +pgx+u at a a-y ay ay +ng1+1 at a ay az ax ay az a21a21 +g:+p O au ay a 0 ox ay a Couette flow. Poiseuille flow Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 Viscous Flow • The Navier-Stokes Equations Nonlinear, second order, partial differential equations. • Couette Flow, Poiseuille Flow. + + + + = − + + + + + + + = − + + + + + + + = − + + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z w y w x w g z p z w w y w v x w u t w z v y v x v g y p z v w y v v x v u t v z u y u x u g x p z u w y u v x u u t u z y x = 0 + + z w y v x u

Convection Basic heat transfer equation q=h As(TS-Too)h= average heat transfer coefficient Primary issue is in getting convective heat transfer coefficient h ∫ hda. or, for unit width:h=r∫h A L 0 h relates to the conduction into the fluid at the y 0 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 Convection • Basic heat transfer equation • Primary issue is in getting convective heat transfer coefficient, h • h relates to the conduction into the fluid at the wall q = h A (T −T ) s s h = average heat transfer coefficient = = L A s s h dx L h dA h A h s 0 1 or,for unit width: 1 ( ) = − = T T y T k h s y f x 0 -

Convection Heat Transfer Correlations Key is to fully understand the type of problem and then make sure you apply the appropriate convective heat transfer coefficient correlation External flow For laminar flow over flat plate dP 0 ao 2 X nu 0.332Re . 2D- Nur k 0.66 4Rel2 pr X For mixed laminar and turbulent flow over flat plate h hamdx +hurd 0 uL 0037Re4871/P3 0.6<Pr<60 5×10·<Rer<10 Xc=5×105 Fq.7.41 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 Convection Heat Transfer Correlations • Key is to fully understand the type of problem and then make sure you apply the appropriate convective heat transfer coefficient correlation External Flow For laminar flow over flat plate For mixed laminar and turbulent flow over flat plate = 0 dx dP T ,U Ts y 3 1 2 1 = 0.332Rex Pr k h x Nu x x 3 1 2 1 = 0.664Rex Pr k h x Nu x x = + L xc turb xc x hlamdx h dx L h 1 0 ( ) Eq. 7.41 5 10 Re 10 Re 5 10 0.6 Pr 60 0.037 Re 871 Pr 5 x,c 5 8 4 5 1 3 L = = − L NuL

External Convection Flow For flow over cylinder Overall Average nusselt number hD NuD k CRe 2P+13/P)4 Pr Table 7.2 has constants C and m as f(Re For flow over sphere hD Nu D =2+(04Re k D+0.068D少104/4) μ For falling liquid drop Nun=2+0. re pr Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 External Convection Flow For flow over cylinder Overall Average Nusselt number Table 7.2 has constants C and m as f(Re) For flow over sphere For falling liquid drop 1 4 1 3 Pr Pr Re Pr = = s m D D C k hD Nu 1 4 1 2 2 3 0.4 2 (0.4 Re 0.06 Re )Pr = = + + s D D D k hD Nu 1 2 1 3 2 0.6 Re Pr NuD = + D

Convection with Internal flow Main difference is the constrained boundary layer Inviscid flow region Boundary layer region (r,x) ,6 Hydrodynamic entrance region fully developed region x fd.力 Different entry length for laminar and turbulent flow Compare external and internal flow Externalflow: Reference temperature: Too is constant Internalflow. Reference temperature: Tm will change if heat transfer is occurring Tm increases if heating occurs(Is> Tm) Tm decreases if cooling occurs(Is< Im) Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 Convection with Internal Flow • Main difference is the constrained boundary layer • Different entry length for laminar and turbulent flow • Compare external and internal flow: – External flow: Reference temperature: T is constant – Internal flow: Reference temperature: Tm will change if heat transfer is occurring! • Tm increases if heating occurs (Ts > Tm ) • Tm decreases if cooling occurs (Ts < Tm ) ro

Internal Flow(Cont'd For constant heat flux: T(x) conv.x +T .x n c X fd, thermal For constant wall temperature if ts Ti ift> t T Sections 8.4 and 8.5 contain correlation equations for Nusselt number cony A、h△T LM Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 Internal Flow (Cont’d) • For constant heat flux: • For constant wall temperature • Sections 8.4 and 8.5 contain correlation equations for Nusselt number T (x) s Tm (x) fd thermal x , T x Tm Ts T x Tm Ts T x Ts Ti if Ts Ti if qconv = As h TLM in p conv m x T m c q T x , + =

Free(Natural) Convection \TE) P a>0 <0 <0 dx Unstable Stable, Bulk fluid motion No fluid motion Grashofnumber in natural convection is analogous to the reynolds number in forced convection G2=8B(7,-Tm)3 Buoyancy forces Viscous forces Natural Natural Rel convection can Re 2 convection be neglected L dominates Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 Free (Natural) Convection • Grashof numberin natural convection is analogous to the Reynolds number in forced convection Unstable, Bulk fluid motion Stable, No fluid motion ( ) Viscousforces Buoyancy forces 2 3 = − = g T T L Gr s L 1 Re2 L GrL 1 Re2 L GrL Natural convection dominates Natural convection can be neglected

Free(Natural) Convection Rayleigh number: For relative magnitude of buoyancy and viscous forces Ra=GrPr For vertical surface transition to turbulence at Rax= 109 Review the basic equations for different potential cases, such as vertical plates, vertical cylinders, horizontal plates (heated and cooled) For horizontal plates, discuss the equations 9.30 9.32.(P513) Please refer to problem 9.34 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Free (Natural) Convection Rayleigh number: For relative magnitude of buoyancy and viscous forces • Review the basic equations for different potential cases, such as vertical plates, vertical cylinders, horizontal plates (heated and cooled) • For horizontal plates, discuss the equations 9.30- 9.32. (P513) • Please refer to problem 9.34. = Pr Rax Grx For vertical surface, transition to turbulence at Rax 109
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11 Heat Exchangers.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9 Free Convection.ppt
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 22 定态方程的积分形式.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 21 变分法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 20 简并微扰论.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 19 定态近似方法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 18 两费米子体系的自旋波函数.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 17 空间反演不变性与宇称守恒.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 16 对称性.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 15 两个角动量耦合.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 14 自旋.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 13 角动量的一般性质.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 12 代数解法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 11 粒子在中心场中的运动.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 10 一维方势阱.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 9 一维束缚态问题.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 8 力学量.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 7 不确定关系.pdf
- 上海交通大学:《传热学》课程PPT教学课件(英文版)recall-fluid mechanics1.ppt
- 《电磁学》第9章 磁场中的磁介质.ppt
- 《电磁学》第10章 电磁感应.ppt
- 《电磁学》第11章 麦克斯韦方程组和电磁辐射.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第一章 对称性与对称破缺 第一节 对称性和对称性原理 第二节 对称性与守恒定律 第三节 对称性的自发破缺.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第一节 基本粒子及其相互作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第三节 宇宙.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第一节 能量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述 第二节 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第三节 角动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章 机械振动和机械波 第一节 简谐振动.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第一节 简谐振动(2/2)第二节 弹性系统的振动(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(1/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第三篇 相对论和时空 第六章 狭义相对论 第一节 力学相对性原理、伽利略变换 第二节 狭义相对论的基本原理、洛仑兹变换 第三节 狭义相对论时空观.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)西南交通大学:《大学物理》第三篇 相对论和时空 第六章 狭义相对论 第三节 狭义相对论时空观.ppt