上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9-1

HEAT TRANSFER CHAPTER 9 Free Convection 们au Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 9 Free Convection

Natural Convection Where we’ ve been. Up to now, have considered forced convection that is an external driving force causes the flow. Where we’ re going: Consider the case where fluid movement is by buoyancy effects caused by temperature differential Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 2 Natural Convection Where we’ve been …… • Up to now, have considered forced convection, that is an external driving force causes the flow. Where we’re going: • Consider the case where fluid movement is by buoyancy effects caused by temperature differential

When natural convection is important Weather events such as a thunderstorm Glider planes · Radiator heaters Hot air balloon Heat transfer with pipes and electrical lines Heat flow through and on outside of a double pane window Just sitting there Oceanic and atmospheric motions Coffee cup example Small velocity Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 3 When natural convection is important • Weather events such as a thunderstorm • • Glider planes • Radiator heaters • Hot air balloon • Heat transfer with pipes and electrical lines • Heat flow through and on outside of a double pane window • Just sitting there • Oceanic and atmospheric motions • Coffee cup example …. Small velocity

Natural Convection KEY POINTS THIS LECTURE New terms Volumetric thermalexpansion coefficient Grashofnumber Rayleigh number Buoyancy is the driving force Stable versus unstable conditions Nusselt number relationship for laminar free convection on vertical surface Boundary layer impacts: laminar= turbulent Text book sections:$9.1-9.5 Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 4 Natural Convection KEY POINTS THIS LECTURE • New terms – Volumetric thermal expansion coefficient – Grashof number – Rayleigh number • Buoyancy is the driving force – Stable versus unstable conditions • Nusselt number relationship for laminar free convection on vertical surface • Boundary layer impacts: laminar turbulent • Text book sections: §9.1 – 9.5

Buoyancy is the driving force Buoyancy is due to combination of Differences in fluid densit Body force proportional to density Body forces gravity, also Coriolis force in atmosphere and oceans Convection flow is driven by buoyancy in unstable conditions plr) P P 少0 o fluid motion may be (no constraining surface)or along a surface Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 5 Buoyancy is the driving force • Buoyancy is due to combination of – Differences in fluid density – Body force proportional to density – Body forces gravity, also Coriolis force in atmosphere and oceans • Convection flow is driven by buoyancy in unstable conditions • Fluid motion may be (no constraining surface) or along a surface

Buoyancy is the driving force( Cont d) Free boundary layer flows p7 1 Heated wire or hot pipe Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 6 Buoyancy is the driving force (Cont’d) • Free boundary layer flows Heated wire or hot pipe

A heated vertical plate We focus on free convection flows bounded by a surface The classic example is T>1 u(x, Extensive quiescent fluid g (b) Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 7 A heated vertical plate • We focus on free convection flows bounded by a surface. • The classic example is Ts T u(x,y) y g Ts T x v u Extensive, quiescent fluid

Governing Equations The difference between the two flows(forced flow and free flow)is that, in free convection,a major role is played by buoyancy forces Consider the x-momentum equation Ⅴ ery important auau 1 ap l-+ -g+v As we know, ap/ay=0, hence the x-pressure gradient in the boundary layer must equal that in the quiescent region outside the boundary layer aP -pog n,,O(△p1,,02n +y Buoyancy force△p=-p Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 8 Governing Equations • The difference between the two flows (forced flow and free flow) is that, in free convection, a major role is played by buoyancy forces. • Consider the x-momentum equation. • As we know, , hence the x-pressure gradient in the boundary layer must equal that in the quiescent region outside the boundary layer. X = −g Very important 2 2 g 1 y u x P y u v x u u − + = − + p / y = 0 - g x P = 2 2 g y u y u v x u u + = + Buoyancy force = −

Governing Equations(Contd) Define B, the volumetric thermal expansion coefficient B pa7丿p For an ideal gas:P、RT RT Thus: B For liquids and non-ideal gases, see appendix a In general 1△, B p△Tp1-7 p≈pB(T-7 Density gradient is due to the temperature gradient Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 9 Governing Equations (Cont’d) • Define , the volumetric thermal expansion coefficient. • In general, T Thus RT RT P P T P 1 : For an ideal gas : 1 = = = = − For liquids and non-ideal gases, see appendix A T T −T − = − − 1 1 ( ) − T −T Density gradient is due to the temperature gradient

Governing Equations(cont'd Now, we can see buoyancy effects replace pressure gradient in the momentum equation 8(T-1)+ ax a The buoyancy effects are confined to the momentum equation, so the mass and energy equations are the same 0 Ox dy aT a aT v/au OX Strongly coupled and must be solved simultaneously Heat Transfer Su Yongkang School of Mechanical Engineering
Heat Transfer Su Yongkang School of Mechanical Engineering # 10 Governing Equations (cont’d) • Now, we can see buoyancy effects replace pressure gradient in the momentum equation • The buoyancy effects are confined to the momentum equation, so the mass and energy equations are the same. 2 2 ( ) y u g T T v y u v x u u = − + + = 0 + y v x u 2 2 2 + = + y u y c T y T v x T u p Strongly coupled and must be solved simultaneously
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11 Heat Exchangers.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 9 Free Convection.ppt
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 22 定态方程的积分形式.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 21 变分法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 20 简并微扰论.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 19 定态近似方法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 18 两费米子体系的自旋波函数.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 17 空间反演不变性与宇称守恒.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 16 对称性.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 15 两个角动量耦合.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 14 自旋.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 13 角动量的一般性质.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 12 代数解法.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 11 粒子在中心场中的运动.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 10 一维方势阱.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 9 一维束缚态问题.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 8 力学量.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 7 不确定关系.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 6 力学量的测量几率.pdf
- 北京大学:《量子力学》课程教学资源(讲义)Lecture 5 厄米算符.pdf
- 上海交通大学:《传热学》课程PPT教学课件(英文版)CHAPTER 11-1.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)Final Review.ppt
- 上海交通大学:《传热学》课程PPT教学课件(英文版)recall-fluid mechanics1.ppt
- 《电磁学》第9章 磁场中的磁介质.ppt
- 《电磁学》第10章 电磁感应.ppt
- 《电磁学》第11章 麦克斯韦方程组和电磁辐射.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第一章 对称性与对称破缺 第一节 对称性和对称性原理 第二节 对称性与守恒定律 第三节 对称性的自发破缺.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)课程介绍.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第一节 基本粒子及其相互作用.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二章 物质世界的结构层次 第三节 宇宙.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第一节 能量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第二篇 运动和守恒定律 第三章 运动的描述 第二节 运动的描述.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第三节 角动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律(2/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章 机械振动和机械波 第一节 简谐振动.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第一节 简谐振动(2/2)第二节 弹性系统的振动(自学).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第四章 力学中的守恒定律 第二节 动量守恒定律.ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第五章机械振动和机械波 第三节 机械波的产生、传播和叠加(1/2).ppt
- 西南交通大学:《大学物理》课程教学资源(PPT课件讲稿)第三篇 相对论和时空 第六章 狭义相对论 第一节 力学相对性原理、伽利略变换 第二节 狭义相对论的基本原理、洛仑兹变换 第三节 狭义相对论时空观.ppt