西南交大:《大学物理》(双语版)Chapter 10 Spin and orbital motion

UNIVERSITY PHYSICS I CHAPTER 10 Chapter 10 Spin and orbital motion Rotation: All around us: wheels, skaters, ballet, gymnasts helicopter, rotors, mobile engines, CD disks, Atomic world: electrons“spin”,“ orbit Universe: planets spin and orbiting the sun galaxies spin,… Chapter 4 kinematics Chapter 10 dynam
1 Chapter 10 Spin and orbital motion Rotation: All around us: wheels, skaters, ballet, gymnasts, helicopter, rotors, mobile engines, CD disks, … Atomic world: electrons— “spin”, “orbit”. Universe: planets spin and orbiting the sun, galaxies spin, … Chapter 4 kinematics Chapter 10 dynamics

s10.1 Some concepts about rotation 1. Spin--describe rotational motion of a system about an axis through its center of mass 2. Rigid body-a system composed of many pointlike particles that maintain fixed distances from each other at all time each particle of the spinning rigid body system executes circular motion about the axis through the center of mass 3. Orbital motion-the center of the mass of system is moving in space from a perspective t a particular reference frame. 810.1 Some concepts about rotation The motion of the center of mass must not be circular ●
2 §10.1 Some concepts about rotation 1. Spin—describe rotational motion of a system about an axis through its center of mass. 2. Rigid body—a system composed of many pointlike particles that maintain fixed distances from each other at all time. each particle of the spinning rigid body system executes circular motion about the axis through the center of mass. 3. Orbital motion—the center of the mass of the system is moving in space from a perspective of a particular reference frame. The motion of the center of mass must not be circular. §10.1 Some concepts about rotation

s10.1 Some concepts about rotation 4. The orbital angular momentum of a particle Define:L=r×p=rxm Magnitude L L=rmvsin8=Pr=rp Direction: Perpendicular to the plane containing the 6∴ r and p 810.1 Some concepts about rotation Notice O L is measured with respect to the origin at O; ②unit:kgm2/s; 3 whatever the path or trajectory of a particle is straightline. curved path, closed orbital ath 5. The angular momentum of the circular orbital motion of a particle (a) Angular momentum
3 4. The orbital angular momentum of a particle Define: L r p r mv r r r r r = × = × x y z m θ r r p r o ⊥r L r ⊥ p Magnitude: L = rmvsinθ = p⊥r = r⊥ p Direction: r p r r and Perpendicular to the plane containing the §10.1 Some concepts about rotation Notice: 1 is measured with respect to the origin at O; 2 unit: kg·m2/s; 3 whatever the path or trajectory of a particle is straightline , curved path, closed orbital path, …. L r 5. The angular momentum of the circular orbital motion of a particle (a) Angular momentum §10.1 Some concepts about rotation

s10.1 Some concepts about rotation L=rxp=r×m L= myr V=xI v=⑦r then mor=mro L=mro (b)Moment of inertia of a particle define = mr then L=mro=lo 810.2 The time rate of change of angular momentum and torque 1. The time rate of change of angular momentum for a single particle L=r×P P) X D+rx dt dt dt d p=×p=vxmv=0 F dt dL =rX d rxF dt total
4 L mvr L r p r mv = = × = × r r r r r v r v r ω ω = = × r r r r r p r o m ω r ω ω 2 2 then L = m r = mr (b) Moment of inertia of a particle ω r r 2 L = mr §10.1 Some concepts about rotation 2 I = mr ω ω r r r L = mr = I 2 define then §10.2 The time rate of change of angular momentum and torque 1. The time rate of change of angular momentum for a single particle t p p r t r r p t t L d d d d ( ) d d d d r r r r r r r = × = × + × L r p r r r = × total d d d d 0 d d r F t p r t L p v p v mv t r r r r r r r r r r r r Q ∴ = × = × × = × = × = r r F r θ o m

810.2 The time rate of change of angular momentum and torque 2. torque Define: T total=/ F total Magnitude t=rF sin 0=n F=rF1=d' Direction: Perpendicular to the plane containing the r and F Unit of the torque: n'm r is the position vector of the point of application of the force with respect to the chosen origin 8 10.2 The time rate of change of angular momentum and torque Discussion: F 6=0or丌, If 3 F=0 total total =0 F cross the O
5 Define: total Ftotal r r r r τ = × 2. torque is the position vector of the point of application of the force with respect to the chosen origin. r r Unit of the torque: N·m Magnitude: = = ⊥ = ⊥ τ rF sinθ r F rF Direction: Perpendicular to the plane containing the r F r r and r r F r θ o m r⊥ = d F⊥ §10.2 The time rate of change of angular momentum and torque r r F r θ o m r⊥ = d F⊥ If cross the , 0, 0 or , total F O Fr r = θ = π 0 τ total = r §10.2 The time rate of change of angular momentum and torque Discussion:

8 10.2 The time rate of change of angular momentum and torque 3. Dynamics of circular orbital motion of a single particle L=mr20=lo r×F dt d d total (o= dr Example 1: P3 10.5 Can not be used Example 2: P433 10.6 in noncircular orbital motion 8 10.3 The angular momentum of a system of particles and moment of inertia of rigid body 1. The angular momentum of a system of particles L=∑L=∑x=∑x CM +r! P L=∑Gw+xm ×∑m+∑xm(m+) =xm+mm+∑m可 6
6 3. Dynamics of circular orbital motion of a single particle ω ω r r r Q L = mr = I 2 total total d d d d τ r r r r r r = × = r × F = t p r t L Example 1: P433 10.5 Example 2: P433 10.6 α ω τ ω r r r r I t I I t ∴ = = = d d ( ) d d total Can not be used in noncircular orbital motion. §10.2 The time rate of change of angular momentum and torque §10.3 The angular momentum of a system of particles and moment of inertia of rigid body 1. The angular momentum of a system of particles = ∑ = ∑ × = ∑ × ii i i i i i i i L L r p r m v r r r r r r ⎩ ⎨ ⎧ = + ′ = + ′ i CM i i CM i v v v r r r r r r r r r Q θ pi r o rCM r ir r mi ir r C ′ ( ) ( ) i i i i CM i i i CM i i i i CM i i i CM i i i i i i CM i r m v r m v r m v r m v r m v v L r r m v = × + ′× + ′× ′ = × + ′× + ′ = + ′ × ∑ ∑ ∑ ∑ ∑ ∑ r r r r r r r r r r r r r r r ∴

810.3 The angular momentum of a system of particles and moment of inertia of rigid body First term: FcM x2m, ",=FCM XMVCM Second term ∑水mFCM=∑mx下m= Mcmv=0 le position vector of center of mass with respect to the center of mass Third term: ∑ r×mv is the vector sum of angular momentum of all particles with respect to the center of mass. 33中mHm出e then L=×Mc+∑可xm可 orbital 十 2. Spin angular momentum of oN a rigid body about a axis through the center of mass ∑xm可 =0X ⊥ i∥ 十 ∴Lm=∑m+)x(D×n)
7 ×∑ = × i rCM mivi rCM MvCM r r r r First term: ∑ ′× = ∑ ′× = ′ × = 0 CM CM CM i i CM i i i i r m v m r v Mr v r r r r r r Second term: The position vector of center of mass with respect to the center of mass i i i ir m v r r Third term: ∑ ′× ′ is the vector sum of angular momentum of all particles with respect to the center of mass. §10.3 The angular momentum of a system of particles and moment of inertia of rigid body Lorbital Lspin L r Mv r m vi i i CM CM i r r r r r r r = + = × +∑ ′× ′ then 2. Spin angular momentum of a rigid body about a axis through the center of mass i v ′ r o ω r z o′ mi ir′ r ⊥ ′ ir r i // r′ r i i i i L r m v r r r Q = ∑ ′× ′ spin ⊥ ⊥ ′ = × ′ ′ = ′ + ′ i i i i i v r r r r r r r r r r ω // ( ) ( ) spin // ⊥ ⊥ ∴ =∑ ′ + ′ × × ′ i i i i i L m r r r r r r r r ω §10.3 The angular momentum of a system of particles and moment of inertia of rigid body

810.3 The angular momentum of a system of particles and moment of inertia of rigid body ∑m而X(x) +∑m×(xh) n..uol iL +∑mh The vector is an involved vector summation. The rotation of an oddly shaped object about any axis of rotation is beyond the scope of this course 8 10.3 The angular momentum of a system of particles and moment of inertia of rigid body 3. The moment of inertia or rotational inertia of a rigid body about a fixed axis through 乡 center of mass ∑mhX(x)=∑mrO1 O fOthe rigid body is symmetry r about the axis; ② the axis is fixed. This term has no effect. Then ∑ (a×r1) ∑m 8
8 §10.3 The angular momentum of a system of particles and moment of inertia of rigid body ∑ ∑ ∑ ∑ ⊥ ⊥ ⊥ ⊥ ⊥ + ′ = − ′ + ′ × × ′ = ′ × × ′ i i i i i i i i i i i i i i i m r m r r m r r L m r r ω ω ω ω r r r r r r r r r 2 // spin // ( ) ( ) i v ′ r o ω r z o′ mi ir′ r ⊥ ′ ir r i // r′ r The vector is an involved vector summation. The rotation of an oddly shaped object about any axis of rotation is beyond the scope of this course. i v ′ r o ω z r o′ mi ir′ r ⊥ ′ ir r i // r′ r 3. The moment of inertia or rotational inertia of a rigid body about a fixed axis through center of mass ∑ ⊥ ∑ ⊥ ′ × × ′ = − ′ i i i i i i i i m r r m r r r r r r // (ω ) ω If 1the rigid body is symmetry about the axis; 2the axis is fixed. This term has no effect. Then ∑ ∑ ⊥ ⊥ ⊥ = ′ = ′ × × ′ i i i i i i i m r L m r r ω ω r r r r r 2 spin ( ) §10.3 The angular momentum of a system of particles and moment of inertia of rigid body

810.3 The angular momentum of a system of particles and moment of inertia of rigid body Define:cw=∑mh This is the moment of inertia or rotational inertia of a rigid body about a fixed axis through center of mass The angular momentum 0 MO=C∑m s10.3 The angular momentum of a system of particles and moment of f inerti a of rigid body 4. The moment of inertia of various rigid bodies (a) point particle r-a distance from the axis of rotation (b) Collection of point particles I=∑ ri1 --the perpendicular distance of each mass m from the axis of rotation (c) Rigid body of distributive mass 几L d
9 i v ′ r o ω z r o′ mi ir′ r ⊥ ′ ir r i // r′ r ∑ ⊥ = ′ i CM i i I m r 2 Define: This is the moment of inertia or rotational inertia of a rigid body about a fixed axis through center of mass The spin angular momentum of a rigid body ω ω r r r ( ) 2 spin = = ∑ ⊥ i CM i i L I m r §10.3 The angular momentum of a system of particles and moment of inertia of rigid body 4. The moment of inertia of various rigid bodies (a) Point particle 2 I = mr r –a distance from the axis of rotation (b) Collection of point particles = ∑ ⊥ i i I m ri 2 --the perpendicular distance of each mass mi from the axis of rotation ri⊥ §10.3 The angular momentum of a system of particles and moment of inertia of rigid body (c) Rigid body of distributive mass I r dm2 = ∫ ⊥

810.3 The angular momentum of a system of particles and moment of inertia of rigid body -the perpendicular distance of each mass dm from the axis of rotation The element of mass: adl linear density: a dm= ds surface density: o pdv volum density P 8 10.3 The angular momentum of a system of particles and moment of inertia of rigid body Examplel: 5 particles are connected by 4 light staffs as shown in figure. Find the moment of the system with respect to the axis through point A, and perpendicular to the paper plane. Solution:I=∑m ●4 I=2m12+3m(2) n +(4m+5m)(√2l) =32ml 5m 10
10 --the perpendicular distance of each mass dm from the axis of rotation r⊥ dm = λdl linear density:λ σdS surface density:σ ρdV volum density:ρ The element of mass: §10.3 The angular momentum of a system of particles and moment of inertia of rigid body l l l l A m 2m 3m 4m 5m 2 2 2 2 32 (4 5 )( 2 ) 2 3 (2 ) ml m m l I ml m l = + + = + Example1: 5 particles are connected by 4 light staffs as shown in figure. Find the moment of the system with respect to the axis through point A, and perpendicular to the paper plane. Solution: 2 = ∑ i⊥ i i I m r §10.3 The angular momentum of a system of particles and moment of inertia of rigid body
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《热学》课程PPT教学课件(讲稿)第十讲 热力学第二定律.ppt
- 《热学》课程PPT教学课件(讲稿)第九讲 循环卡诺循环.ppt
- 《热学》课程PPT教学课件(讲稿)第八讲 热力学第一定律对.ppt
- 《热学》课程PPT教学课件(讲稿)第七讲 两种摩尔热容.ppt
- 《热学》课程PPT教学课件(讲稿)第六讲 热力学基础.ppt
- 《热学》课程PPT教学课件(讲稿)第五讲 麦克斯韦速率分布.ppt
- 《热学》课程PPT教学课件(讲稿)第四讲 能量均分定理.ppt
- 《热学》课程PPT教学课件(讲稿)第三讲 气体分子的平均平动.ppt
- 《热学》课程PPT教学课件(讲稿)第二讲 理想气体压强公式.ppt
- 《热学》课程PPT教学课件(讲稿)第一讲 绪论.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业31解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业30《电场二》测试解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业29《电场一》测试解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业28热一定律测试解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业27分子运动论测试解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业26解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业25解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业24解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业23解答.ppt
- 福州大学:《大学物理》课程教学资源(PPT课件讲稿,电磁场、热学)至诚学院大学物理作业22解答.ppt
- 西南交大:《大学物理》(双语版)对称性与守恒定律.pdf
- 西南交大:《大学物理》(双语版)Chapter 12 Waves.pdf
- 《相对论》PDF电子书.pdf
- 三峡大学理学院:《大学物理》PPT电子教案_第一章 运动的描述(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第二章 运动定律与力学中的守恒定律(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第三章 相对论(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第四章 机械振动(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第五章 机械波(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第六章 气体动理论基础(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第七章 热力学基础(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第八章 静电场和稳恒电场(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第九章 稳恒磁场与电磁场的相对性(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十章 电磁感应(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十一章 电磁场和电磁波(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十二章 光的干涉(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十三章 光的衍射(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十四章 光的偏振(张甫宽).ppt
- 三峡大学理学院:《大学物理》PT电子教案_第十六章 量子物理基础(张甫宽).ppt
- 三峡大学:《大学物理》课程教学资源(试卷习题)自测题一.doc
- 三峡大学:《大学物理》课程教学资源(试卷习题)自测题二.doc