深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第9讲 向量组的秩

线性代数第9讲 向量组的秩 本文件可从网址 http://math.vip.sina.com 上下载 (单击ppt讲义后选择工程数学子目录) 2021/2/20
2021/2/20 1 线性代数第9讲 向量组的秩 本文件可从网址 http://math.vip.sina.com 上下载 (单击'ppt讲义'后选择'工程数学'子目录)

在R3中,给定四个共面向量a,a2,a2,a,它们显 然是线性相关的,但它们中存在两个线性无关 的向量,而任一个向量都可由这两个线性无关 的向量线性表示(例如:a1,a2线性无关,a3,c4可 由a,线性表示).此外它们中任意三个向量 是线性相关的,即它们中任一个线性无关的部 分组最多只含2个向量,数2就叫作这个向量组 的秩 2021/2/20
2021/2/20 2 在R3中, 给定四个共面向量a1 ,a2 ,a3 ,a4 , 它们显 然是线性相关的, 但它们中存在两个线性无关 的向量, 而任一个向量都可由这两个线性无关 的向量线性表示(例如:a1 ,a2线性无关, a3 ,a4可 由a1 ,a2线性表示). 此外它们中任意三个向量 是线性相关的, 即它们中任一个线性无关的部 分组最多只含2个向量, 数2就叫作这个向量组 的秩

3 2021/2/20
2021/2/20 3 a1 a2 a3 a4

定义6如果向量组a1,cx2,.中存在个线性无 关的向量,且其中任一个向量可由这r个线性 无关的向量线性表示,则数r称为向量组的秩, 记作秩{ax,a2,,a}=F 显然,如果a1,a2,线性无关,则 秩{a1,a1,…,ax} 只含零向量的向量组的秩为零. 2021/2/20
2021/2/20 4 定义6 如果向量组a1 ,a2 ,...,as中存在r个线性无 关的向量, 且其中任一个向量可由这r个线性 无关的向量线性表示, 则数r称为向量组的秩, 记作 秩{a1 ,a2 ,...,as}=r. 显然, 如果a1 ,a2 ,...,as线性无关, 则 秩{a1 ,a2 ,...,as}=s; 只含零向量的向量组的秩为零

定义7如果向量组月,B2,中每个向量可由 向量组ax2a2,,c线性表示,就称前一个向量 组可由后一个向量组线性表示.如果两个向量 组可以互相线性表示,则称这两个向量组是等 佡的 5 2021/2/20
2021/2/20 5 定义7 如果向量组b1 ,b2 ,...,bt中每个向量可由 向量组a1 ,a2 ,...,as线性表示, 就称前一个向量 组可由后一个向量组线性表示. 如果两个向量 组可以互相线性表示, 则称这两个向量组是等 价的

定理4如果向量组B1,2…,B可由向量组 a,a2,,线性表示,且ts,则月1,B2线性相 关 证设B=∑ka1(=1,2 验证β1B2,…B线性相关,考察 x1B1+x2B2+.+xB=0,(3.11) ∑xB C 0 6 2021/2/20
2021/2/20 6 定理4 如果向量组b1 ,b2 ,...,bt可由向量组 a1 ,a2 ,...,as线性表示, 且t>s, 则b1 ,b2 ,...,bt线性相 关. 证 设 1 ( 1, 2, , ), s j ij i i b ak j t = = = 1 1 1 1 1 0. t t s s t j j j ij i ij j i j j i i j x x k k x b a a = = = = = === 验证b1 ,b2 ,...,bt线性相关, 考察 x1b1+x2b2+...+xtbt =0, (3.11) 即

∑kx=0,2=1, (3.12) 时,(3.11)式显然成立.而(3.12)式是个 未知量x1x2…x的齐次线性方程组,由 于s(方程个数),故方程组(3.12)式有 非零解,即有不全为零的x1x2…使 (3.11)式成立,所以1B2…线性相关 7 2021/2/20
2021/2/20 7 当 1 0, 1,2, , , (3.12) t ij j j k x i s = = = 时, (3.11)式显然成立. 而(3.12)式是t个 未知量x1 ,x2 ,...,xt的齐次线性方程组, 由 于t>s(方程个数), 故方程组(3.12)式有 非零解, 即有不全为零的x1 ,x2 ,...,xt使 (3.11)式成立, 所以b1 ,b2 ,...,bt线性相关

推论1如果向量组B1,B2,2可由向量组 c线性表示,且B1,B2…B线性无关,则 推论2若秩{ax,a2,ax}=,则a1,a2,,a3中任 何r-+1个向量都是线性相关的 证不妨设a,a2,ax是向量组a1,a2,,中的 个线性无关的向量,由于该向量组中任一个向 量可由a1,a,…,线性表示,由定理4立即可得 其中任何r-+1个向量都线性相关 8 2021/2/20
2021/2/20 8 推论1 如果向量组b1 ,b2 ,...,bt可由向量组 a1 ,a2 ,...,as线性表示, 且b1 ,b2 ,...,bt线性无关, 则 ts. 推论2 若秩{a1 ,a2 ,...,as}=r, 则a1 ,a2 ,...,as中任 何r+1个向量都是线性相关的. 证 不妨设a1 ,a2 ,...,ar是向量组a1 ,a2 ,...,as中的r 个线性无关的向量, 由于该向量组中任一个向 量可由a1 ,a2 ,...,ar线性表示, 由定理4立即可得 其中任何r+1个向量都线性相关

如此,向量组的秩可等价地定义为:若向量组 中存在r个线性无关的向量,且任何r+1个向量 都线性相关,就称数r为向量组的秩 由此可知,秩为r的向量组中,任一个线性无关 的部分组最多只含r个向量.因此,秩为的向 量组中含有〃个向量的线性无关组,称为该向 量组的极大线性无关组.一般情况下,极大线 性无关组不唯一,但不同的极大线性无关组所 含向量个数是相同的. 9 2021/2/20
2021/2/20 9 如此, 向量组的秩可等价地定义为: 若向量组 中存在r个线性无关的向量, 且任何r+1个向量 都线性相关, 就称数r为向量组的秩. 由此可知, 秩为r的向量组中, 任一个线性无关 的部分组最多只含r个向量. 因此, 秩为r的向 量组中含有r个向量的线性无关组, 称为该向 量组的极大线性无关组. 一般情况下, 极大线 性无关组不唯一, 但不同的极大线性无关组所 含向量个数是相同的

推论3设秩{a1灬…,a},秩{B1,B}=,如果向 量组B12B可由向量组a1,c线性表示,则 证不妨设a1…,和B,月分别是两个向量组 的极大无关组,因此有 又已知 =∑b1(k=1……1) 所以B=∑bc=∑∑bk, J= 2021/2/20
2021/2/20 10 推论3 设秩{a1 ,...,as}=p, 秩{b1 ,...bt}=r, 如果向 量组b1 ,...bt可由向量组a1 ,...,as线性表示, 则 rp. 证 不妨设a1 ,...,ap和b1 ,...br分别是两个向量组 的极大无关组, 因此有 , ( 1, , , , ). 1 1 1 1 1 = = = = = = = = = p j j s i ki i j s i p j k ki i j j s i k ki i b c b c b k r t b a a b a 所以 1 ( 1, , ). p i ij j j a ac i s = = = 又已知
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第8讲 n维向量及其线性相关性.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第7讲 分块矩阵.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第6讲 可逆矩阵的逆矩阵.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第5讲 作业的问题.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第4讲 矩阵的加法数量乘法 乘法.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第3讲 第二章矩阵.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第2讲 行列式的计算克菜姆法则.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第1讲 行列式.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第14讲 二次型.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第13讲 特征值和特征向量矩阵的对角化.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第12讲 正交矩阵及其性质.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第11讲 向量空间与线性变换.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,线性代数)第10讲 线性方程组.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第9讲 随机变量的数字特征.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第8讲 随机变量的相互独立性.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第7讲 第六章二维随机变量.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第6讲 连续型随机变量.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第5讲 一维随机变量.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第4讲 条件概率独立性.ppt
- 深圳大学:《线性代数和概率论》课程教学资源(PPT课件讲稿,概率论)第3讲 随机事件的概率.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)复习— 复变函数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(复习)复变函数.rtf
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第1讲 复变函数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第2讲 复变函数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第3讲 初等函数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第4讲 基本定理的推广.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第5讲 第四章级数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第6讲 洛朗级数.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第7讲 本性奇点.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)工程数学第8讲 共形映射.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第六章 样本及抽样分布.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计 §1 点估计 §2 基于截尾样本的最大似然估计 §3 估计量的评选标准.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计 §4 区间估计 §5 正态总体均值与方差的估计 §6(0-1)分布参数的区间估计 §7 单侧置信区间.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第八章 假设检验.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第九章 方差分析及回归分析 §1 单因素试验的方差分析 §2 双因素试验的方差分析.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第九章 方差分析及回归分析 §3 一元线性回归 §4 多元线性回归.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第十章 随机过程及其统计描述.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第十一章 马尔可夫链.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第十二章 平稳随机过程.ppt
- 深圳大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第一章 概率论的基本概念 §1 随机试验 §2 样本空间、随机事件 §3 频率与概率 §4 等可能概型(古典概型).ppt