新加坡国立大学:Adversarial Personalized Ranking for Recommendation
NUS崖, S|G|R2018 National University Lab for Media Search Adversarial Personalized Ranking for Recommendation Xiangnan He, Zhankui He, Xiaoyu du, Tat-Seng Chua School of Computing National University of Singapore
Adversarial Personalized Ranking for Recommendation Xiangnan He, Zhankui He, Xiaoyu Du, Tat-Seng Chua School of Computing National University of Singapore 1 SIGIR 2018
DeNUS Motivation ational University The core of ir tasks is ranking Search Given a query, ranking documents Recommendation Given a user, ranking items a personalized ranking task Ranking is usually supported by the underlying scoring model Linear. Probabilistic, Neural network models etc Model parameters are learned by optimizing learning- to-rank loss Question: is the learned model robust in ranking? Will small change on inputs/parameters lead to big change on the ranking result? This concerns model generalization ability
Motivation • The core of IR tasks is ranking. • Search: Given a query, ranking documents • Recommendation: Given a user, ranking items – A personalized ranking task • Ranking is usually supported by the underlying scoring model. – Linear, Probabilistic, Neural network models etc. – Model parameters are learned by optimizing learning-to-rank loss • Question: is the learned model robust in ranking? – Will small change on inputs/parameters lead to big change on the ranking result? – This concerns model generalization ability. 2
Adversarial Examples on DeNUS ational University Classification ( Goodfellow et al, ICLR' 15 Recent efforts on adversarial machine learning show many well-trained classitiers sutter from adversarial examples: +.007× panda nematode” gibbon 57.7 confidence 8. 2% confidence 99.3 confidence This implies weak generalization ability of the classifier Question: do such adversarial examples also exist for IR ranking methods?
Adversarial Examples on Classification (Goodfellow et al, ICLR’15) • Recent efforts on adversarial machine learning show many well-trained classifiers suffer from adversarial examples: – This implies weak generalization ability of the classifier • Question: do such adversarial examples also exist for IR ranking methods? 3
Adversarial Examples on DeNUS ational University Personalized Ranking We train visually-aware BPR(He et al, AAAl16 on a user image interaction dataset for visualization VBPR is a pairwise learning-to-rank method Effect of adversarial examples on personalized ranking Top-4 image ranking 360 5.5 +0.007 of a sampled user. o0a0o05 3.50 +0.007x before vs. after adversarial noise: 49 +0.007 翻 34 测+000 4.13 ariginal Images Perturbed Ir Small adversarial noises on images ( noise level e= 0.007)leads to big change on ranking
Adversarial Examples on Personalized Ranking • We train Visually-aware BPR (He et al, AAAI’16) on a userimage interaction dataset for visualization. – VBPR is a pairwise learning-to-rank method • Effect of adversarial examples on personalized ranking: 4 Small adversarial noises on images (noise level ϵ = 0.007)leads to big change on ranking. Ranking scores (before) Ranking scores (after) Top-4 image ranking of a sampled user. before vs. after adversarial noise:
Quantitative Analysis on DeNUS ational University Adversarial Attacks We train matrix factorization(Mf)with BPR loss MF is a widely used model in recommendation BPR is a standard pairwise loss for personalized ranking We add noises on model parameters of mf Random noise vs. Adversarial noise Performance change w.r.t. different noise levels E(i. e, L, norm Conclusion: 0.16 MF-BPR is robust to 0.06 0.1 random noise but not 0.08 for adversarial noise! ● Adversarial Noise 004 Adversarial Noise Random Noise 0 040.60.8 (a) Testing NDCG vs.∈ (c) Testing NDCG vs.∈
Quantitative Analysis on Adversarial Attacks • We train matrix factorization (MF) with BPR loss – MF is a widely used model in recommendation – BPR is a standard pairwise loss for personalized ranking • We add noises on model parameters of MF – Random noise vs. Adversarial noise – Performance change w.r.t. different noise levels ε (i.e., L2 norm): 5 Conclusion: MF-BPR is robust to random noise, but not for adversarial noise!
DeNUS Outline ational University Introduction motivation Method Recap bpr Bayesian Personalized Ranking APR: Adversarial training for BPR Experiments Conclusion
Outline • Introduction & Motivation • Method – Recap BPR (Bayesian Personalized Ranking) – APR: Adversarial Training for BPR • Experiments • Conclusion 6
DeNUS Recap BPR ational University BPR aims to maximize the margin between an ordered example paIr. sigmoid Positive prediction Negative prediction LBPR(O⊙) In oyu(o)-yuj(e)+hellOll (,i,j)∈分 Pairwise training examples: u prefers i over j An example of using bpr to optimize mf model BPR Objective In al.u- 9u). Training Minimizer yui=Puq redictions Puqi Embeddin qp q (positive item) user (negative item [Rendle et al, UAI09
Recap BPR 7 • BPR aims to maximize the margin between an ordered example pair. • An example of using BPR to optimize MF model: Pairwise training examples: u prefers i over j sigmoid Positive prediction Negative prediction [Rendle et al, UAI’09]
Our Method APR: Adversarial DeNUS ational University Personalized Ranking The aim is to improve the robustness of model trained for personalized ranking ·|dea: 1 Construct an adversary to generate noise on bPr during training 2)train the model to make it perform well even under noise Original BPR Loss Perturbed bpr loss BPR(O)⊙)+|LBR(D|e+△ Generate additive noise by Minimize maximizing BPr loss Learner Adversary
Our Method APR: Adversarial Personalized Ranking • The aim is to improve the robustness of model trained for personalized ranking. • Idea: 1) Construct an adversary to generate noise on BPR during training 2) Train the model to make it perform well even under noise. 8 Learner Original BPR Loss Perturbed BPR Loss + Minimize Adversary Generate additive noise by maximizing BPR loss
DeNUS APR Formulation ational University earning objective of apr (to be minimized Adversarial noise LAPR(⊙)=LBPR(Oe)+LBPR(O|e+△a Original BPR Loss Perturbed bpr loss Where the adversarial noise tries to maximize bpr loss db= arg max LBp(同+△) E Current model parameters Control magnitude of noise(avoid trivial solution that simply increases value Can be seen as adding an adaptive regularizer to BPr training Dynamically change during training n controls strength of regularization
APR Formulation • Learning objective of APR (to be minimized): where the adversarial noise tries to maximize BPR loss: • Can be seen as adding an adaptive regularizer to BPR training – Dynamically change during training – λ controls strength of regularization 9 Original BPR Loss Perturbed BPR Loss Adversarial noise Control magnitude of noise (avoid trivial solution that simply increases value) Current model parameters
DeNUS APR Formulation ational University Overall formulation is solving a mini-max problem e,△*= arg min, max LBPR(O)+LBPR(⊙+△ e△,A‖|≤e Model Learning mInl-max game Minimize ran king loss Adversary Learning --- Maximize ranking loss i adversary loss Next: Iterative two-step solution for apr learning 1. Generate Adversarial Noise(maximizing player) 2. Update Model Parameters(minimizing player Until a convergence state is reached
APR Formulation • Overall formulation is solving a mini-max problem: • Next: Iterative two-step solution for APR learning: 1. Generate Adversarial Noise (maximizing player) 2. Update Model Parameters (minimizing player) – Until a convergence state isreached 10 Model Learning Minimize ranking loss + adversary loss Adversary Learning Maximize ranking loss mini-max game
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 非洲博茨瓦纳大学:孔子学院介绍.ppt
- 首都经济贸易大学:职业生涯管理中的心理契约因素.ppt
- 当代世界的思想政治教育:新生教育的科学性与实效性.ppt
- 基金申请技巧讲座:如何申请国家自然科学基金.ppt
- 高校教学研究:高等院校课程与精品课程建设(PPT讲稿).ppt
- 华南师范大学教育信息技术学院:《信息技术教育的理论与方法》课程教学资源(PPT课件)第三章 信息能力与技能.ppt
- 山东师范大学教师教育学院:学科课程与教学理论(PPT讲稿).pptx
- 上海市公安局文化保卫分局:2018年上海理工大学留学生安全防范法制宣讲.pptx
- 香港中文大学:A Review on Teaching and Learning Activities and Quality Assurance.ppt
- 论文选题PPT:论文写作任务、进度与要求.ppt
- 简单人生(PPT讲稿)把你的财务人生.pps
- 黄冈职业技术学院:基于工作过程的课程设计与开发解读.ppt
- 山东大学:《生死教育》课程教学资源(PPT课件)第十二章 死亡与永生(与世永存,人类的梦想).ppt
- 学校心理咨询流程与技术(PPT讲稿)咨询心得体会.ppt
- 图书馆传统文献服务与现代信息服务的比较研究.ppt
- 海口经济学院:本科教学审核评估评建工作重点与难点的思考(陈啸).ppt
- 中山大学教育学院:基于一所研究型大学的本科生学习状况调查的实证分析.pptx
- 大连工业大学:“两学一做”学习教育工作布置会暨专题党课(PPT讲稿).ppt
- 湘潭大学:从工程教育专业认证看我国本科教育质量保证体系建设.pptx
- 华南师范大学教育技术研究所:教育技术实验学校在教育信息化建设进程中的责任(李克东).ppt
- Foundations of Programming Languages – Course Overview.pptx
- 中国(宁波)大学生创业大赛 China Ningbo college students entrepreneurship competition.ppt
- 合肥工业大学:毕业设计中的文献查询与运用.ppt
- 西南交通大学:专题PPT——大学国际化评价与发现(闫月勤).pptx
- 山东师范大学:《课程与教学理论前沿问题研究》课程教学资源(PPT专题课件)教学理论流派简介(车丽娜).ppt
- 香港大學:母語教學施行情況調查初步分析報告.ppt
- 大连工业大学:新气象新担当、积极推进学校国际化发展.pptx
- 香港中文大学:Education, Rustication and Communist Party Membership:What Pays? What Does Not Pay?.ppt
- 清华大学:高等院校信息素养能力指标体系的研究(面向信息素养 Towards Information Literacy).ppt
- 华东师范大学:社会心理与自我管理(PPT讲稿).ppt
- 合肥学院协同培养卓越人才的探索与实践.ppt
- 西安交通大学:一流大学建设高校建设方案.ppt
- 上海邦德职业技术学院:教育教学科研课题的选题(PPT讲座).ppt
- 学术论文的写作规范与投稿技巧:几点体会(吴曙光).ppt
- 南方医科大学:医学信息获取与管理(检索与利用中外专利).pptx
- 华东师范大学:实践导向的职业教育课程与教学模式(技术学范式).ppt
- 南京师范大学:新时代的劳动者(PPT讲稿).pptx
- 汕头大学:国际视野中的教学改革(顾佩华).ppt
- 合肥学院:树立质量理念建设质量保障体系(王昆仑).ppt
- 北京邮电大学图书馆:网络信息资源的交流、利用和开发.ppt