中国高校课件下载中心 》 教学资源 》 大学文库

上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.5-Driving constraint

文档信息
资源类别:文库
文档格式:PPT
文档页数:10
文件大小:388.5KB
团购合买:点击进入团购
内容简介
上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.5-Driving constraint
刷新页面文档预览

3.5 Driving constraint In addition to kinematic structure,the motion of mechanism is described by actuator inputs that specifies the time history of some position coordinates or the relative position of pairs of bodies. To uniquely determine the time history of motion of a mechanism,a number of inputs must be specified,equal in number of degrees of freedom of the system. Driving constraints are family of standard drivers

3.5 Driving constraint • In addition to kinematic structure, the motion of mechanism is described by actuator inputs that specifies the time history of some position coordinates or the relative position of pairs of bodies. • To uniquely determine the time history of motion of a mechanism, a number of inputs must be specified, equal in number of degrees of freedom of the system. • Driving constraints are family of standard drivers

3.5.1 Absolute Drivers Absolute position Driver Φad0=x-C1=x,+x”cos4,-y"sin4,-C()=0 出a=0-x-"cos4 yaxd()=C(t) C2y+G0 Xi +C (t) a0卡y-C, /cos4,C2()=0 =乙co-sirj v(=C2(t) X yo=y0+C,(0)=(sin4+Sr8s4)02+C,(0)

3.5.1 Absolute Drivers x i x  i y y  Pi P ir ir P i s C1(t) C2(t) cos sin ( ) 0 1 1 ( )  x C  x  x   y  i C t  P i i P i i P i axd i     i P i i P i axd i x y i 1 0 sin cos ( )      q ( ) 1 ( ) v C t axd i   ( ) ( cos sin ) ( ) 1 2 1 ( ) ( ) C t x y C t i i P i i P i axd i ax i                sin cos ( ) 0 2 2 ( )  y C  y  x   y  i C t  P i i P i i P i ayd i     i P i i P i ayd i x y i 0 1 cos sin ( )     q ( ) ( sin cos ) ( ) 2 2 2 ( ) ( ) C t x y C t i i P i i P i ayd i ay i                ( ) 2 ( ) v C t ayd i   Absolute position Driver

Absolute angle Driver P x C3④ X Φawdo=p,-C3(t)=0 电,do=[00刂 v0d@=C3(t) ya()=C(t)

3 ( ) 0 ( )  i C t  a d i    0 0 1 ( )  a d i i  q ( ) 3 ( ) C t a d i    ( )  3 ( ) v C t a d i    x i x  i y y  Pi P ir ir P i s C3(t) Absolute angle Driver

3.5.2 Constraints between pairs of bodies (Relative constraints) A relativeΦdriver Φrd》=中,-9,-C3()=0 Φgaw=[00] Dw》=[00-] v'aa》=C3(t)) yd(iD=C(t)

3.5.2 Constraints between pairs of bodies (Relative constraints) 3 ( ) 0 ( , )  j  i C t  r d i j     0 0 1 ( , )  r d i j j  q 0 0 1 ( , )   r d i j i  q ( ) 3 ( , ) v C t r d i j    ( ) 3 ( , ) C t r d i j     A relative  driver

A relative distance driver 西》=(-ry(-r)-C4()2=0 》=2-Y(-ryBs] Φ》=2(P-ry-(-yB, v=2C4(t)C4(t) y=y+2C4(t)C4(t)+2[C4(t)] =20-62AsP-,2As)-26-y(-) +2C4(t)C4(t)+2[C4(t)]2

A relative distance driver     ( ) 0 2 4 ( , )    C t  P j P i T P j P i rdd i j  r r r r      P i i T P j P i T P j P i rdd i j i r r r r B s q  2    ( , )        P j j T P j P i T P j P i rdd i j j r r r r B s q  2      ( , )          2 4 4 4 2 2 2 4 4 4 2 ( ) ( ) 2[ ( )] 2 2 2 ( ) ( ) 2[ ( )] C t C t C t C t C t C t P j P i T P j P i P j j j P i i i T P j P i rdd rd                        r r  A s  A s r r r r   2 ( ) ( ) 4 4 v C t C t rdd  

A revolute-rotational driver Φrdw》=(p+0,)-(9,+0,)-C()=0 》=[001 x y C(1) Φga-[00-1 vmau,》=C(t) 分 yrd》=C(t) X

( ) ( ) ( ) 0 ( , )  j  j  i  i C t  rr d i j      0 0 1 ( , )  rrd i j j q 0 0 1 ( , )   rr d i j qi  ( ) ( , ) v C t rrd i j   ( ) ( , ) C t rr d i j    A revolute-rotational driver

A translational-distance driver y, C(t)is the time history of the directed distance di x between P;and P Dn=/4-C0)=0 Vi >x y,=Ad=r+A,”-r-As” Φ》=A,'(-r)+yA,s-ys”-vC()=0

( ) 0 ( , )  C t  vi ij T tdd i j i v d  A translational-distance driver C(t) is the time history of the directed distance between Pi and Pj ( ) ( ) 0 ( , )           viC t  P i T i P ij j T j i i T i T i tdd i j  v A r r v A s v s i i i v  Av P i i i P ij j j j d  r  A s  r  A s

Differentiation of Φ》=4(-)+As-ys”-y,C()=0 One obtains D=A(g-)+A,T(G-)+A,s-,C0) =,yB,(y-)+A,(店-)+B,s(0-,)-vC() =yB,(g-r)+A'(G-)-,C()=0 变》=【yAB'g,-r小,Φ=A0 vaaa,》=v,C(t)

( ) ( ) 0 ( , )           viC t  P i T i P ij j T j i i T i T i tdd i j  v A r r v A s v s ( ) ( ) ( ) 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )                              v C t v C t v C t j i i T i T j i i T i T i i j i i P ij j T j i i T i T j i i T i T i i i P ij j T j i i T i T j i i T i T i tdd i j                 v B r r v A r r v B r r v A r r v B s v A r r v A r r v A s      Differentiation of One obtains    0 T i T i tdd i j j i T i T i T i T i tdd i j i j q   v A v B r  r q  v A ( , ) ( , )  ( )   ( ) ( , ) v v C t i tdd i j  

Differentiation of Φ》=,yB,(g-r)+yA(G-)-v,C()=0 One obtains a0=yB,(g-r)-,2yA(y,-r)+2,yB,(G-) +A(-)-y,C()=0 ya》=,2yA(y-r)-2,yB,(G-)+v,C(t)

Differentiation of One obtains ( ) ( ) ( ) 0 ( , )      j  i  viC t  T i T j i i T i T i i tdd i j        v B r r v A r r ( ) ( ) 0 ( ) ( ) 2 ( ) ( , ) 2               v C t j i i T i T i j i T i T j i i i T i T j i i i T i T i i tdd i j          v A r r   v B r r  v A r r  v B r r ( ) 2 ( ) ( ) ( , ) 2 v C t j i i T i T j i i i T i T i i tdd i j         v A r  r   v B r  r 

3.5.3 Right side of velocity and acceleration equations For a kinematic constraint Φ(q=0 The associated driver is of the form Φa(q,t)=Φ(q)-C(t)=0 One obtains ①g=Φ, v4=v+C(t)=C(t) y4=x+C(t)

For a kinematic constraint The associated driver is of the form (q)  0 3.5.3 Right side of velocity and acceleration equations ( ,t)  ( )  (t)  0 d  q  q C One obtains q q d (t) (t) d v v C C    (t) d C    

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档