上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.4-Gears

3.4 Gears and cam-followers 3.4.1 Gears Gear teeth on the periphery of the gears cause pitch circles to roll relative to each other without slip
3.4 Gears and cam-followers 3.4.1 Gears Gear teeth on the periphery of the gears cause pitch circles to roll relative to each other without slip

3.4.1 Gears 1.Outer meshing gear The arc lengths DO,and DO are equal. ↑9 1=0,Q,and Ocoincide a,R,=a R O,and are fixed points on y B;and Bi,0,e,are constant x+0=p+8 a,=4+0-0 R,(,+0,)+R+0)Rπ C%=-(9+0-0-π) R+R x,+8,+4=B+π am明一心1用一r收-=0-8 u Ru w-rk-r小m--0 Two constraint Φ》=(-y(G-)-(R+R,}=0 equations
Qi and Qj are fixed points on Bi and Bj, j j j 3.4.1 Gears The arc lengths DQi and DQj are equal. t = 0, Qi and Qj coincide ( ) j j j i i i sin cos 0 ( , ) P i P j P i P j P i P j T g i j u r r x x y y i j j i i j D Qi Qj u Pj u Pi 0 ( , ) 2 i j P i P j T P i P j rd i j r r r r R R i j i i i j j j j R R R R R Two constraint equations x y i x i y j x j y i j , are constant i i i iRi jRj u PiPj // u PiPj 0 P i P j T u r r u Ru sin cos u 1. Outer meshing gear

s》=ur(-)=-sine6-x)+cos6y-y)=0 R(,+0,)+R,,+日,-Rπ R,+R,, R+R R+R -[-l-8a. (Rg+R,) R+R 》=(-2)+w6-) R+BsB)=0 R,+R a”-w-ra y8)=0 eai-rg
sin cos 0 ( , ) P i P j P i P j P i P j T g i j u r r x x y y Since 0 ( , ) i P j i i i P j j j T i j i i j j P i P j T P i P j T P i P j T g i j R R R R u r B s r B s u r r u r r u r r i j i i j j R R R R u u u u u sin cos , cos sin , sin cos i j i i i j j j j R R R R R i j i i j j R R R R The velocity equation is The Jacobians of the constraint with respect to qi and qj are i j P i i P j P T i i T T g i j R R R i u u B s u r r q ( , ) i j P j i P j P T j j T T g i j R R R j u u B s u r r q ( , ) 0 g (i, j) v

W-R4+R)+r'6+B,s4-i-Bs”)=0 R+R -=i,+B功,-片-Bs4,B,=-中,A,B=-4A4 a=8]-加-)=6-y-)=0 un=-化-转年R)w6-k有+R⊙) R+Rj R+R +n'呢+B,y有-日-Bs)-2m6-A+R》 R+R +u(As+2AsP)=0 2m-R4+R)+u'6,24,s-2As)=0 R+R
0 ( , ) i P j i i i P j j j T i j i i j j P i P j T g i j R R R R u r B s r B s u r r Differentiating the velocity equation 0 2 2 2 ( , ) P i i i P j j j T i j i i j j P i P j T i P j i i i P j j j T i j i i j j P i P j T i j i i j j P i P j T g i j R R R R R R R R R R R R u A s As u r r u r B s r B s u r r u r r 0 2 ( , ) 2 2 P i i i P j j j T i j i i j j P i P j T g i j R R R R u A s A s u r r And using i j j j i i i P j i i i P j j j P i P r j r r B s r B s , B A , B A u u cos sin 0 P i P j T P i P j T u r r u r r

2.Inner meshing gear e. R>R The arc lengths DO;and DO,are equal. t=0,O;and coincide &R=&,R O;and Oare fixed points on Ri B;and Bi,0,,are constant a,+0=+8, %=4+0-0 -R(+0)+R(,+0,) ,+B=日,+9 %,=中,+8,-0 -R+R 吧一i1两一心-小-0[调 u=Ru n=r'6--m心-小-g)=0} Two constraint D》=(g-)Y(-)-(R,-R,)=0 equations
Qi and Qj are fixed points on Bi and Bj, j j j The arc lengths DQi and DQj are equal. t = 0, Qi and Qj coincide i i i j j j sin cos 0 ( , ) P i P j P i P j P i P j T g i j u r r x x y y i j i j j i D Qi Qj u u Pi Pj 2 ( , ) 0 T rd i j P P P P rj ri rj ri Ri Rj i i i j j j i j R R R R Two constraint equations x y i x i y j x j y i j , are constant i i i iRi jRj u PiPj // u PiPj 0 P i P j T u r r u Ru sin cos u 2. Inner meshing gear D i Ri Rj Rj Ri

·g -[]*4+4 Number of constraint s=2 9,=(9,9,=69,) q=ag)=(m,5p,) n=6 Degrees of freedom δ=n-S=4 Parameters of the constraint ,js”=(x”y)',s=(y),R,R,0,6
T T , , , , , , , P P P P P P i i i j j j i j i j i j s x y s x y R R s 2 Degrees of freedom n s 4 Number of constraint T T j j j q r Parameters of the constraint T T i i i q r T T T T T T i j i i j j q q q r r n 6 P P i P i P i i i i x y r r As ( , ) ( , ) 2 sin cos = P P P P g i j j i j i rd i j T P P P P j i j i i j x x y y R R r r r r 0 P P j P j P j j j j x y r r A s

Rack and pinion If the radius of the gear on body i becomes infinite,a straight gear profile is called a rack,and the gear on body j is called a pinion,and the gear pair is called a rack and pinion
Rack and pinion If the radius of the gear on body i becomes infinite, a straight gear profile is called a rack, and the gear on body j is called a pinion, and the gear pair is called a rack and pinion

Rack and pinion y 1.The pinion is above the rack This pair may be seen as a revolute- translational composite joint with the condition of arc DO=DO Ois fixed point on B,is constant v is fixed point on Bi,is constant P Xi The constraint equation of a revolute- translational composite joint is o=(g-)-R,=0 Two constraint equations are V. The equal arc length condition is s=(-)=Rg, ” where where 0=9+0,0,+a,=2 +0-9 3江+,+0,-4,-日, aj
This pair may be seen as a revolutetranslational composite joint with the condition of arc DQj = DQi i j j j xi yi xj yj Qj Pj Pi ( , ) 0 T rt i j i P P j i j i R v v r r T i P Q j i j j i s R v v r r i Qi D Rj The constraint equation of a revolutetranslational composite joint is i v i v Two constraint equations are s where 3 , 2 i i j j j ( , ) 0 rt i j T P P i j i i j v R v r r ( , ) 0 rp i j T P Q i j i i j j v r r v R The equal arc length condition is where j i i j j 2 3 P i P j r r Q i P j r r Rack and pinion 1. The pinion is above the rack Qj is fixed point on Bj, j is constant vi is fixed point on Bi, is constant i xj

2.The pinion is below the rack This pair may be seen as a revolute- translational composite joint with the condition of arc DO;=DO Ois fixed point on B,is constant v is fixed point on Bi,0 is constant The constraint equation of a revolute- translational composite joint is wn-(-)-R=0 Two constraint equations are The equal arc length condition is s=2(g-)=Ra where ) 0=项+0-元4+0,+a,=0+受 where a,=-7+项+0-4-0
i j j j xi xj yj Qj Pj i Qi D Rj i v i v s P i P j r r Q i P j r r yi Pi This pair may be seen as a revolutetranslational composite joint with the condition of arc DQj = DQi 2. The pinion is below the rack Qj is fixed point on Bj, j is constant vi is fixed point on Bi, is constant i The constraint equation of a revolutetranslational composite joint is ( , ) 0 T rt i j i P P j i j i R v v r r The equal arc length condition is T i P Q j i j j i s R v v r r where , 2 i i j j j Two constraint equations are ( , ) 0 rt i j T P P i j i i j v R v r r ( , ) 0 rp i j T P Q i j i i j j v r r v R where 2 j i i j j

o 10 =[ 0x,=c+4+8,-9-0 3π/2,The pinion is above the rack The pinion is below the rack Number of constraint S=2 9=a=(g,p, n=6 Degrees of freedom δ=n-s=4 Parameters of the constraint ij,s=(xy),s=(xy),0=(xy),R,8,c
T T T , , , , , , , , P P P P P P Q Q Q i i i j j j i i i j i j i j s x y s x y s x y R c s 2 Degrees of freedom n s 4 Number of constraint Parameters of the constraint T T T T T T i j i i j j q q q r r n 6 P P i P i P i i i i x y r r As ( , ) ( , ) = T P P rt i j i j i i j rp i j T T P Q i j i i j j v R v R v r r v r r 0 P P j P j P j j j j x y r r A s Q Q i Q i Q i i i i x y r r As i i i v Av j i i j j c cos sin i i i v 3 / 2, The pinion is above the rack / 2, The pinion is below the rack c
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.3-Relative Constraint.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.2-Absolute constraints.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.1-Basic Concepts.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_2014复杂系统动力学试卷.pdf
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)邵炜桓.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)第四组-第三次作业-初稿.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)第三次作业要求.pdf
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)第一次作业打分表.docx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)周一浩.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)力学仿生第三次作业.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)分组.docx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)仿水黾机器人(第三组).pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)二参数温度模型.docx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)9秦源.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)9力学仿生第一次作业_吴靖瑶_鳐鱼水动力学性能在水下推进器及无人机中的应用.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)8吴宇峻.ppt
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)8力学仿生第一次作业_沈晓昳_仿猫清洁擦.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)7力学仿生第一次作业_陈志杰_越过山丘,无需白头.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)6陈志杰.pptx
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)6力学仿生第一次作业_陈天宇_小型扑翼式无人机.pptx
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.5-Driving constraint.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.6-Position, velocity and acceleration analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.6-Position, velocity and acceleration analysis_1.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.7-singularity.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 4_Char4-Numerical methods.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 4_Flow chart for kinematics.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Planar Kinematic Modeling and Analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example 4.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example 5.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example2.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.1-Equations of motion of a planar rigid body.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.2 Virtual work and generalized force.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.2 Virtual work and generalized force.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.3 Equations of motion of constrained planar.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.4 Inverse Dynamics.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.5 Equilibrium Problem.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.6 Constraint reaction forces.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 7_chap7-Numerical Methods in Dynamics.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Planar Dynamic Modeling and Analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example 4.doc