上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.4 Inverse Dynamics

6.4 Inverse Dynamics of Kinematically Driven systems For dynamic system with only kinematic constraints Mi+D,九=2 nh×3nb 中,i=Y nh≤3nb If driving constraints are appended to the kinematic constraints ΦK Φ= =0,Φ:(3nb-nh)×1 3nb×3nb 1f西,g,≠0, such problem is an inverse dynamic problem
6.4 Inverse Dynamics of Kinematically Driven systems q Mq Q q q T A If driving constraints are appended to the kinematic constraints For dynamic system with only kinematic constraints nh nb nh nb 3 3 q : (3 ) 1 nb nh D D K 0, 3nb 3nb q (q,t) 0, q If such problem is an inverse dynamic problem

If,(,)≠0, Equations M+Φ,九=04 may be solved Φ,i=Y i=Φ,y=西,'№4-M λ= Lagrange multiplier associated with the driving constraints,which is used for determining the forces and torques that would be required to impose the driving constraints
q Mq Q q q T A 1 q q Q Mq q T A 1 (q,t) 0, q If Equations may be solved D K : D Lagrange multiplier associated with the driving constraints, which is used for determining the forces and torques that would be required to impose the driving constraints

Example 6.7 X Single pendulum is shown in the figure.The length of the pendulum is 21,and the mass of the pendulum is m.The pendulum is applied with gravitational force.The kinematic driver is given by ΦD=-3π/2-2t=0 1.Write the acceleration constraint equation X 2.Write the Lagrange equation of the first kind 3.Write the mixed algebraic-differential equation 4.Find the Lagrange multipliers 5.Give a physical interpretation of each Lagrange multiplier
Example 6.7 3 / 2 2 t 0 D x1 y1 C x y g Single pendulum is shown in the figure. The length of the pendulum is 2l, and the mass of the pendulum is m. The pendulum is applied with gravitational force. The kinematic driver is given by 2. Write the Lagrange equation of the first kind 1. Write the acceleration constraint equation 3. Write the mixed algebraic-differential equation 5. Give a physical interpretation of each Lagrange multiplier 4. Find the Lagrange multipliers

Solution: X Kinematic driver ΦD=p-3π/2-2t=0 Constraint equations 中 x-1cos Φ= y-lsinφ =0 g φ-3π/2-2t Xi Acceleration constraint equation Φ,i=y Length 27 101sinφ -Icosoo2 Mass m y=-Isin2 0
Solution: 0 t y l x l 3 / 2 2 sin cos 0 0 1 0 1 cos 1 0 sin l l q 0 sin cos 2 2 l l 3 / 2 2 t 0 D Kinematic driver Constraint equations Acceleration constraint equation q q x1 y1 C x y g Length 2l Mass m

Acceleration constraint equation 10lsinφ Icos2 01-1cosφ =一 Isingo2 001 Dynamic equations of the first kind m 0 0 m 0 22 三 -mg n-2 0 0 -1cosoo2 21 ml cos 9o2 > i= 护 -Isin2 九2 -mg mlsin o2 0 元3-mgl cos
0 sin cos 2 2 l l y x q cos sin cos 2 2 3 2 1 mgl mg ml ml Dynamic equations of the first kind 0 0 sin cos 1 0 1 0 1 0 0 0 0 / 3 0 0 0 0 3 2 1 2 mg l l y x ml m m 0 sin cos 0 0 1 0 1 cos 1 0 sin 2 2 l l y x l l Acceleration constraint equation

Physics meaning 「2]「mio02 元2 -mg +mlsin2 -mglcos Tangent and normal acceleration of C mg a,=1币=0an=l02 Xi -ma cos=F 九1=-F -ma sino=F-mg 九2=-F, 等m3=1-g1cs=0 九3=-L
Physics meaning x1 y1 C x y mg at an Fx Fy L cos sin cos 2 2 3 2 1 mgl mg ml ml 0 t a l 2 a l n Tangent and normal acceleration of C m n Fx a cos ma F mg n sin y cos 0 3 4 2 ml L mgl 2 Fy 3 L 1 Fx

Example 6.8 Double pendulum is shown in the figure. The length of each pendulum is 21,and the mass of each pendulum is m.Each X pendulum is applied with gravitational force.The kinematic driver is given by Length 27 Mass m ,-4- y2 8 1.Write the acceleration constraint equation X 2.Write the Lagrange equation of the first kind 2 3.Write the mixed algebraic-differential equation 4.Find the Lagrange multipliers 5.Give a physical interpretation of each Lagrange Length 21 x2 multiplier Mass m
Example 6.8 x1 y1 C1 x y 1 g x2 y2 C2 2 Length 2l Mass m Length 2l Mass m Double pendulum is shown in the figure. The length of each pendulum is 2l, and the mass of each pendulum is m. Each pendulum is applied with gravitational force. The kinematic driver is given by 2. Write the Lagrange equation of the first kind 1. Write the acceleration constraint equation 3. Write the mixed algebraic-differential equation 5. Give a physical interpretation of each Lagrange multiplier 4. Find the Lagrange multipliers 0 15 2 3 15 5 2 1 1 t t D

Solution Kinematic driver X DD = =0 o Length 27 Mass m Kinematic constraint equations ,y2 g 月 Length 21 X2 Mass m
0 0 sin cos 0 cos sin 1 1 1 1 1 1 l y x Kinematic driver Kinematic constraint equations x1 y1 C1 x y 1 g x2 y2 C2 2 Length 2l Mass m Length 2l Mass m sin cos 0 cos sin sin cos 0 cos sin 2 2 2 2 2 2 1 1 1 1 1 1 l y l x y x 0 15 2 3 15 5 2 1 1 t t D Solution:

Constraint equations x-Icos y-Isin Φ= x2-1cos-x-1cos =0 y2-Isin-y-Isin 4-5π/3-t/15 42-4-2t/15 Acceleration equation Φ,i=Y 「101sin00 0 -1cos,,2 01-1cos4100 -Isin2 -1 0 Isin 1 0 Isin2 -1cos,2-1c0sp222 Da= Y= 0-1-1cos4,01-1cosφ2 -Isin2-Isin 0 0 00 0 -1 00 0
0 2 /15 5 / 3 /15 sin sin cos cos sin cos 2 1 1 2 2 1 1 2 2 1 1 1 1 1 1 t t y l y l x l x l y l x l Constraint equations Acceleration equation q q 0 0 1 0 0 1 0 0 1 0 0 0 0 1 cos 0 1 cos 1 0 sin 1 0 sin 0 1 cos 0 0 0 1 0 sin 0 0 0 1 2 1 2 1 1 l l l l l l q 0 0 sin sin cos cos sin cos 2 2 2 2 1 1 2 2 2 2 1 1 2 1 1 2 1 1 l l l l l l

Solve equations 0 Isin 00 0 -1cos442 0 1 -1cos 0 0 0 :2 -Isin -1 0 Isin 10 Isin 西 -Icos2-1cos 0 -1-1cos4 0 1 -1cosφ2 2 -Isin42-lsin少,4, 0 0 1 0 0 0 0 0 0 -1 00 1 西 0 1 -lcos,可,2 -Isin2 西 0 元2 -2cos,,2-1cos222 2 -21sin-Isin2 可, 0
0 2 sin sin 2cos cos 0 sin cos 2 2 2 2 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 2 2 1 1 1 l l l l l y x y x 0 0 sin sin cos cos sin cos 0 0 1 0 0 1 0 0 1 0 0 0 0 1 cos 0 1 cos 1 0 sin 1 0 sin 0 1 cos 0 0 0 1 0 sin 0 0 0 2 2 2 2 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 2 2 1 1 1 1 2 1 2 1 1 l l l l l l y x y x l l l l l l Solve equations
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.3 Equations of motion of constrained planar.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.2 Virtual work and generalized force.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.2 Virtual work and generalized force.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.1-Equations of motion of a planar rigid body.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example2.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example 5.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Modeling for Example 4.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 5_Planar Kinematic Modeling and Analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 4_Flow chart for kinematics.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 4_Char4-Numerical methods.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.7-singularity.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.6-Position, velocity and acceleration analysis_1.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.6-Position, velocity and acceleration analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.5-Driving constraint.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.4-Gears.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.3-Relative Constraint.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.2-Absolute constraints.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 3_CHAP3.1-Basic Concepts.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_2014复杂系统动力学试卷.pdf
- 上海交通大学:《力学仿生——启示与探索》课程教学资源(讲课讲稿)邵炜桓.pptx
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.5 Equilibrium Problem.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 6_Char6.6 Constraint reaction forces.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 7_chap7-Numerical Methods in Dynamics.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Planar Dynamic Modeling and Analysis.ppt
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example 4.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example1.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example2.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_双摆动力学仿真说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_双摆动力学逆问题说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_静平衡条件说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学附加题.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_双摆动力学仿真说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_双摆动力学逆问题说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_运动学上机_运动学计算流程图.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_运动学计算流程图.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_静平衡条件说明.doc
- 上海交通大学:《人体生物力学》课程教学资源(讲义)人体生物力学概论(梁夫友).pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)心血管生物力学及其在疾病诊疗方面的应用.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)运动生物力学及组织损伤机理、计算机辅助手术.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)生物力学的发展前景.pdf