复旦大学:《集合论》课程教学资源(PPT课件)集合论导论 Introduction to Set Theory(张宓)

Discrete mathematics Discrete i.e. no continuous Set theory, Combinatorics, Graphs, Modern Algebra(Abstract algebra, Algebraic structures), Logic, classic proba bility, number theory, Automata and Formal Languages, Computability and decidability etc
Discrete mathematics Discrete i.e. no continuous Set theory, Combinatorics, Graphs, Modern Algebra(Abstract algebra, Algebraic structures), Logic, classic probability, number theory, Automata and Formal Languages, Computability and decidability etc

Before the 18th century, Discrete, quantity and space astronomy, physics Example: planetary orbital, Newton's Laws in Three Dimensions continuous mathematics: calculus Equations of Mathematical Physics, Functions of Real Variable, Functions of complex variable Discrete stagnancy
Before the 18th century, Discrete, quantity and space astronomy, physics Example: planetary orbital, Newton's Laws in Three Dimensions continuous mathematics: calculus, Equations of Mathematical Physics, Functions of Real Variable,Functions of complex Variable Discrete ? stagnancy

in the thirties of the twentieth century, Turing Machines Finite Discrete Data Structures and Algorithm Design Database Compilers Design and Analysis of Algorithms Computer Networks Software information security and cryptography the theory of computation New generation computers
in the thirties of the twentieth century, Turing Machines Finite Discrete Data Structures and Algorithm Design Database Compilers Design and Analysis of Algorithms Computer Networks Software information security and cryptography the theory of computation New generation computers

Set theory, Introductory Combinatorics, Graphs, Algebtaic structures Logic. This term: Set theory, Introductory Combinatorics, Graphs, Algebtaic structures(Group, Ring, Field). Next term: Algebtaic structures(Lattices and Boolean Algebras), Logic
Set theory, Introductory Combinatorics, Graphs, Algebtaic structures, Logic. This term: Set theory, Introductory Combinatorics , Graphs, Algebtaic structures(Group,Ring,Field). Next term: Algebtaic structures(Lattices and Boolean Algebras), Logic

1离散数学及其应用(英文版) 作者: Kenneth. Rosen著出版社:机械工业出 版社 2组合数学(英文版)经典原版书库 作者:(美)布鲁迪(Brualdi,R.A.)著出版社: 机械工业出版社 3离散数学暨组合数学(英文影印版) Discrete Mathematics with Combinatorics James A. Anderson, University of South Carolina,Spartanburg 大学计算机教育国外著名教材系列(影印 版)清华大学出版社
1.离散数学及其应用(英文版) 作者:Kenneth H.Rosen 著出版社:机械工业出 版社 2.组合数学(英文版)——经典原版书库 作者:(美)布鲁迪(Brualdi,R.A.) 著出版社: 机械工业出版社 3.离散数学暨组合数学(英文影印版) Discrete Mathematics with Combinatorics James A.Anderson,University of South Carolina,Spartanburg 大学计算机教育国外著名教材系列(影印 版) 清华大学出版社

I Introduction to Set Theory The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to define all other concepts in mathematics. Georg Cantor(1845--1918) is German mathematician. Cantor's 1874 paper, "On a Characteristic Property of All Real Algebraic Numbers", marks the birth of set theory. paradox
ⅠIntroduction to Set Theory The objects of study of Set Theory are sets. As sets are fundamental objects that can be used to define all other concepts in mathematics. Georg Cantor(1845--1918) is a German mathematician. Cantor's 1874 paper, "On a Characteristic Property of All Real Algebraic Numbers", marks the birth of set theory. paradox

twentieth century axiomatic set theory naive set theory Concept Relation, function, cardinal number paradox
twentieth century axiomatic set theory naive set theory Concept Relation,function,cardinal number paradox

Chapter 1 Basic Concepts of Sets 1.1 Sets and Subsets What are Sets? A collection of different objects is called a set S.A The individual objects in this collection are called the elements of the set We write "teA" to say that is an element of A, and We write“tea” to say that is not an element of A
Chapter 1 Basic Concepts of Sets 1.1 Sets and Subsets What are Sets? A collection of different objects is called a set S,A The individual objects in this collection are called the elements of the set We write “tA” to say that t is an element of A, and We write “tA” to say that t is not an element of A

Example: The set of all integers, Z. Then 3eZ, -8eZ, 6. These sets, each denoted using a boldface letter, play an important role in discrete mathematics: N={0, 1,2,.., the set of natural number ==-2,-1,0,1,2,}, the set of integers It=Z={1,,..}, the set of positive integers I-Z--1,-2,.}, the set of negative integers Q-{p/, qeZ,=0}, the set of rational numbers Qt, the set of positive rational numbers Q, the set of negative rational numbers
Example:The set of all integers, Z. Then 3Z, -8Z, 6.5Z These sets, each denoted using a boldface letter, play an important role in discrete mathematics: N={0,1,2,…}, the set of natural number I=Z={…,-2,-1,0,1,2,…}, the set of integers I +=Z+={1,2,…}, the set of positive integers I -=Z-={-1,-2,…}, the set of negative integers Q={p/q|pZ,qZ,q0}, the set of rational numbers Q+ , the set of positive rational numbers Q- , the set of negative rational numbers

1. Representation of set (1)Listing elements, One way is to list all the elements of a set when this is possible.. Example: The set of odd positive integers less than 10 can be expressed by A={1,3,5,7,9} B={x1,x2,x3 123
1. Representation of set (1)Listing elements, One way is to list all the elements of a set when this is possible.. Example:The set A of odd positive integers less than 10 can be expressed by A={1, 3, 5, 7, 9}。 B={x1 ,x2 ,x3 } √
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数学建模》课程教学资源:线性规划与目标规划(PPT知识讲解)第2章 线性规划与单纯形法.ppt
- 运城学院应用数学系:《数学分析》专题选讲PPT(刘俊俏).ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论(关系及其运算、函数及其运算).ppt
- 《高等代数》课程教学资源:科目考试大纲.doc
- 西南电子科技大学:《高等代数》课程PPT教学课件:多项式环与有限域.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)逻辑和证明(证明方法).pptx
- 同济大学:美国数学建模竞赛经验分享.ppt
- 《高等数学》课程PPT教学课件:第二章 导数与微分(导数概念).ppt
- 高等教育出版社:《微分方程》课程教学资源(PPT讲稿)第五节 可降阶的高阶微分方程.ppt
- 清华大学:《数学建模》课程教学资源(讲义)课程教学资源(PPT课件)第九章 概率模型.ppt
- 《运筹学 Operations Research》课程PPT教学课件:第八章 动态规划 Dynamic Programming.ppt
- 中国科学院数学研究院:华罗庚与中国数学(PPT讲稿).ppt
- 浙江大学:《数学建模 Mathematical Modeling》课程教学资源(PPT课件讲稿)Chapter 2 Methods of Mathematical Modeling and Realization with Matlab.ppt
- 《有限元法应用》课程教学资源(实验教学大纲).pdf
- 博士研究生入学考试《工程数学》课程考试大纲.doc
- 哈尔滨工业大学:《线性代数与空间解析几何》课程教学资源(习题解答)习题(工科).pdf
- 哈尔滨工业大学:《线性代数与空间解析几何》课程教学资源(习题解答)习题(偏理).pdf
- 哈尔滨工业大学:《线性代数与空间解析几何》课程教学资源(习题解答)解答(偏理).pdf
- 哈尔滨工业大学:《线性代数与空间解析几何》课程教学资源(习题解答)解答(偏工).pdf
- 《数学建模》PPT讲座:建立数学模型.ppt
- 《离散数学》课程PPT教学课件(讲稿)第5章 谓词逻辑的等值和推理演算.ppt
- 高等教育出版社:《高等数学》课程教学资源(PPT讲稿)定积分的概念及性质.ppt
- 《概率论与数理统计》课程PPT教学课件(第四版)第七章 假设检验 §7.1 假设检验的基本概念.ppt
- 方向导数与梯度(方向导数的定义、梯度的概念).ppt
- 河南理工大学:数学建模论文写作规范.ppt
- 数学建模的发展战略与应用数学的未来.ppt
- 上海交通大学:《线性代数》课程教学资源(PPT课件讲稿)二次型 quadratic form.pptx
- 二次型(二次型及其标准形、二次型的矩阵表示法、二次型经可逆变换后的矩阵).ppt
- 南阳师范学院:《高等数学》课程教学资源(练习题)第九章 重积分.pdf
- 厦门大学线:《线性代数》课程教学资源(PPT课件)分块矩阵.pptx
- 《高等数学》课程PPT教学课件:第九章 多元函数微分法及其应用 第六节 多元函数微分学的几何应用.ppt
- 《信息论》课程PPT教学课件:第二章 信息量和熵.ppt
- 证明数学归纳法和良序原理等价.pptx
- 极限运算法则(PPT讲稿).pps
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第五章 大数定律及中心极限定理.ppt
- 北京师范大学:《大学文科高等数学》课程教学资源(PPT课件)第一部分 初等微积分 第一章 集合与函数.ppt
- 运城学院应用数学系:多连通区域上复边界元及其应用(刘俊俏).ppt
- 《高等数学》课程PPT教学课件:数列的极限.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第四章 有限集和无限集.pptx
- 吉林大学:《大学文科数学》课程PPT教学课件(微积分学)导数在经济数量分析中的应用.ppt