中国高校课件下载中心 》 教学资源 》 大学文库

长沙理工大学:《高等代数与解析几何》课程教学资源(习题解答)一元多项式与整数的因式分解

文档信息
资源类别:文库
文档格式:PDF
文档页数:20
文件大小:298.73KB
团购合买:点击进入团购
内容简介
长沙理工大学:《高等代数与解析几何》课程教学资源(习题解答)一元多项式与整数的因式分解
刷新页面文档预览

习题解答 第十章一元多项式与整数的因式分解 习题10-1 1.计算(x2+ax-b)(x2-1)+(x2-ax+b)(x2+1). 解:2x4-2ax+2b. 2.计算多项式x3+2x2+3x-1与3x2+2x+4的乘积 解:3x5+8x4+17x3+11x2+10x-4. 3.设 f(x)=3x2-5x+3, g(x)=ax(x-1)+b(x+2)(x-1)+cx(x+2), 试确定a,b,c,使f(x)=g(x). 解:取x=-2,得a=;取x=0,得b=-3,取x=1,得c= 4.设f(x),g(x)和h(x)都是实系数多项式,证明:如果 f2(x)=xg2(x)+xh2(x), 那么 f(x)=g(x)=h(x)=0. 证明:如f(x)≠0,则左式的次数为偶数,而右式的次数为奇数,矛盾,故f(x)=0.从而 g2(x)+h2(x)=0. 又,g(x),h(x)皆为实系数多项式,从而g2(x),h2(x)的首项系数都是非负数,而这两个数之和为零,故 g(x),h(x)的首项系数都是零,从而g(x)=h(x)=0. 习题10-2 1.用g(x)除f(x),求商q(x)与余式r(x): (1)f(x)=x4+4x2-x+6,g(x)=x2+x+1; (2)f(x)=x3+3x2-x-1,g(x)=3x2-2x+1. 解:(1)q(x)=x2-x+4,r(x)=-4x+2. (2)q(x)=(3x+11),r(x)=(x-2). 2.m,p,q适合什么条件时,有 (1)x2+mx+1]x3+px+q; (2)x2+mx+1|x4+px2+q. 解:(1)p=1-m2,q=-m. 1

￾   % &￾'() % & 10–1 1. op (x 2 + ax − b)(x 2 − 1) + (x 2 − ax + b)(x 2 + 1). ): 2x 4 − 2ax + 2b. 2. opI~ x 3 + 2x 2 + 3x − 1  3x 2 + 2x + 4  . ): 3x 5 + 8x 4 + 17x 3 + 11x 2 + 10x − 4. 3. f(x) = 3x 2 − 5x + 3, g(x) = ax(x − 1) + b(x + 2)(x − 1) + cx(x + 2), <fX a, b, c, N f(x) = g(x). ): Q x = −2, O a = 25 6 ; Q x = 0, O b = − 3 2 , Q x = 1, O c = 1 3 . 4. f(x), g(x) u h(x) 2!syI~, ^_: 45 f 2 (x) = xg2 (x) + xh2 (x), [# f(x) = g(x) = h(x) = 0. '(: 4 f(x) 6= 0, y.y, Jy.y, , 3 f(x) = 0. IJ g 2 (x) + h 2 (x) = 0. C, g(x), h(x) .syI~, IJ g 2 (x), h2 (x) !~sy2!zzy, Jk@vytu.{, 3 g(x), h(x) !~sy2!{, IJ g(x) = h(x) = 0. % & 10–2 1. X g(x) " f(x), L# q(x) m r(x): (1) f(x) = x 4 + 4x 2 − x + 6, g(x) = x 2 + x + 1; (2) f(x) = x 3 + 3x 2 − x − 1, g(x) = 3x 2 − 2x + 1. ): (1) q(x) = x 2 − x + 4, r(x) = −4x + 2. (2) q(x) = 1 9 (3x + 11), r(x) = 10 9 (x − 2). 2. m, p, q $%"#FGS, $ (1) x 2 + mx + 1 | x 3 + px + q; (2) x 2 + mx + 1 | x 4 + px2 + q. ): (1) p = 1 − m2 , q = −m. (2) ( m = 0 p = 1 + q k ( p = −m2 + 2 q = 1 · 1 ·

3.用综合除法求商q(x)及余式r(c: (1)f)=x4-2r3+4r2-6x+8,g)=x-2 (2)fx)=2x5-5x3-8x,g(e)=x+2. 解:(1)q(x)-x3+4r+2.r(z)-12. (2)q(x)=2r1-4r3+3x2-6x+4,re)=-8. 4.用综合除法表f()为x一的方幂 (1)f()=x4-2x3+3x2-2x+1,x0=2: (2)f)=x4-2x2+3,x0=-2 (3)fx)=x4+2ix3-(1+i)x2-3x+1-2i,z0=-i. 解:(1)fx)=(红-2)4+6(x-2)3+15(x-2)2+18(x-2)+9. (2fm)=(+2)1-8(红+2)3+22(红+2)2-24(x+2)+11. (3)fx)=(x+i0-2i(x+)3-(1+i0(x+)2-5(红+i)+(1+21). 5.记e°=1,()=x(x-1)(x-2…(红-k+1,(k>1).试将fa)表为 c0+C1()+c2)2+… 的形式 (1)fe)=x4-2x3+x2-1 (2)fe)=x5. 解()11-210-1 21 -10 3 14 因此fx)=-1+2)2+4)3+(4 (②)fa)=()+15(x2+25(e3+10e+5 6.k是正格数.证明:xf(x)当日仅当x|f(x: 证明设f(x)的常数项为a,则(x)的常数项为a.因此x|(x)←一ak=0←一a=0←一→ rlf(z). 7.设a,b为两个不相等的常数,证明:多项式fa)被(红一a(红-)除所得余式为 fa)-fr+afo)-f@ 证明设fa)=(-a(-b)q()+A+B,则 f@)=aA+B,f)=bA+B. 由此得 4=10 因此结论成立 8.设(),f2(e),9(c),92(e)都是数域K上的多项式,其中f(x)≠0. 证明:如果gm(e)92()1(e)f2(,f方(e)19h(),则92()川2()

3. X&%"qL# q(x) .m r(x): (1) f(x) = x 4 − 2x 3 + 4x 2 − 6x + 8, g(x) = x − 2; (2) f(x) = 2x 5 − 5x 3 − 8x, g(x) = x + 2. ): (1) q(x) = x 3 + 4x + 2, r(x) = 12. (2) q(x) = 2x 4 − 4x 3 + 3x 2 − 6x + 4, r(x) = −8. 4. X&%"qr f(x) . x − x0 >': (1) f(x) = x 4 − 2x 3 + 3x 2 − 2x + 1, x0 = 2; (2) f(x) = x 4 − 2x 2 + 3, x0 = −2; (3) f(x) = x 4 + 2ix 3 − (1 + i)x 2 − 3x + 1 − 2i, x0 = −i. ): (1) f(x) = (x − 2)4 + 6(x − 2)3 + 15(x − 2)2 + 18(x − 2) + 9. (2) f(x) = (x + 2)4 − 8(x + 2)3 + 22(x + 2)2 − 24(x + 2) + 11. (3) f(x) = (x + i)4 − 2i(x + i)3 − (1 + i)(x + i)2 − 5(x + i) + (1 + 2i). 5. G hxi 0 = 1, hxi k = x(x − 1)(x − 2)· · ·(x − k + 1), (k > 1). <( f(x) r. c0 + c1hxi + c2hxi 2 + · · · p: (1) f(x) = x 4 − 2x 3 + x 2 − 1; (2) f(x) = x 5 . ): (1) 1 1 −2 1 0 −1 1 −1 0 2 1 −1 0 0 2 2 3 1 1 2 3 1 4 l f(x) = −1 + 2hxi 2 + 4hxi 3 + hxi 4 . (2) f(x) = hxi + 15hxi 2 + 25hxi 3 + 10hxi 4 + hxi 5 . 6. k !W y, ^_: x | f k (x) PFaP x | f(x); '(: f(x) `y~. a, f k (x) `y~. a k . l x | f k (x) ⇐⇒ a k = 0 ⇐⇒ a = 0 ⇐⇒ x | f(x). 7. a, b .@v``y, ^_: I~ f(x) ) (x − a)(x − b) "Om. f(a) − f(b) a − b x + af(b) − bf(a) a − b . '(: f(x) = (x − a)(x − b)q(x) + Ax + B, f(a) = aA + B, f(b) = bA + B, lO A = f(a) − f(b) a − b , B = af(b) − bf(a) a − b . l89:;. 8. f1(x), f2(x), g1(x), g2(x) 2!y K I~, -* f1(x) 6= 0. ^_: 45 g1(x)g2(x) | f1(x)f2(x), f1(x) | g1(x), g2(x) | f2(x). · 2 ·

证明:设fi()f(r)=gh(eg2(cg(),gh(m)=fi(r(.则fi(a)f(回)=fi(r(r92(rg(r), 由于fie)≠0,可得(e)=g2(c)2(c)q(a,即g2(c)1f(). *9.证明:x4-1|x-1当且仅当d|n. 证明(→)若n=d4,则 x-1=(x4-1)(4g-0+x4-2+…+x4+1). 因此x4-1|x”-1. ()设n=dg+r,0≤r<d.由上证x-1=0(modx4-1).即 x三1(mod4-1, r三xq+r三x4,x=x(modx-1, xn-1≡x'-1(modx4-1). 而x4-1|x-1÷r=0,因此x4-1|xn-1台r=0台d|n. 习题10-3 1.求最大公因式(f(z),g() (1)fx)=x4+x3-3x2-4r-1,g(x)=x3+x2-x-1: (2f)-x5+x4-x3-2x-1,9a)-3x4+2x3+2-2 (3)f(z)=x4-x3-4x2+4r+1,g(x)=x2-x-1. 解(1)x+1 (2)1. (31. 2.求u(,v(,使u(f)+(rg(=(fg (1)f(x)=x4+2x3-x2-4x-2.g(x)=x4+x3-x2-2x-2: (2)fz)=4r4-2x3-16x2+5r+9,9(x)=2x3-x2-5x+4 (3)fx)=2x+3x3-3x2-5+2,9)=2x3+x2-x-1. 解(1)u(x)=-x-1,v(x)=x+2,d(x)=x2-2. (2)u(x)=-3(-10,(x)=(2x2-2x-3),d(x)=x-1 (3)()=-合2x2+3x,v)=6(2x3+5r2-6),d)=1 3.证明:如果d(〾)川fx),d()川g(,且d()为f(a)与g()的一个组合,那么d()是fx)与g() 的一个最大公因式 证明:设d()=u()f)+()g(,则对任意的h()∈K,如h()fe,h()g(,则 h(x)d(z). 又,d(x)为f)与g()的一个公因式,故d(x)是fx)与g(x)的一个最大公因式 4.证明:如果h(x)为首一多项式,则 (f(z)h(x).g(x)h(z))=(f(z).g(z))h(x). 证明设d()=(fx,g(》≠0,则存在u(x,()使 d(z)=u(z)f(r)+v(r)g(x). 3

'(: f1(x)f2(x) = g1(x)g2(x)q1(x), g1(x) = f1(x)q2(x). f1(x)f2(x) = f1(x)q2(x)g2(x)q1(x),  f1(x) 6= 0, @O f2(x) = g2(x)q2(x)q1(x), K g2(x) | f2(x). ∗9. ^_: x d − 1 | x n − 1 PFaP d | n. '(: (⇒)  n = dq, x n − 1 = (x d − 1)(x d(q−1) + x d(q−2) + · · · + x d + 1). l x d − 1 | x n − 1. (⇐) n = dq + r, 0 6 r < d. ^, x dq − 1 ≡ 0 (mod x d − 1). K x dq ≡ 1 (mod x d − 1), x n ≡ x dq+r ≡ x dq · x r ≡ x r (mod x d − 1), x n − 1 ≡ x r − 1 (mod x d − 1). J x d − 1 | x r − 1 ⇔ r = 0, l x d − 1 | x n − 1 ⇔ r = 0 ⇔ d | n. % & 10–3 1. L^| (f(x), g(x)): (1) f(x) = x 4 + x 3 − 3x 2 − 4x − 1, g(x) = x 3 + x 2 − x − 1; (2) f(x) = x 5 + x 4 − x 3 − 2x − 1, g(x) = 3x 4 + 2x 3 + x 2 − 2; (3) f(x) = x 4 − x 3 − 4x 2 + 4x + 1, g(x) = x 2 − x − 1. ): (1) x + 1. (2) 1. (3) 1. 2. L u(x), v(x), N u(x)f(x) + v(x)g(x) = (f(x), g(x)): (1) f(x) = x 4 + 2x 3 − x 2 − 4x − 2, g(x) = x 4 + x 3 − x 2 − 2x − 2; (2) f(x) = 4x 4 − 2x 3 − 16x 2 + 5x + 9, g(x) = 2x 3 − x 2 − 5x + 4; (3) f(x) = 2x 4 + 3x 3 − 3x 2 − 5x + 2, g(x) = 2x 3 + x 2 − x − 1. ): (1) u(x) = −x − 1, v(x) = x + 2, d(x) = x 2 − 2. (2) u(x) = − 1 3 (x − 1), v(x) = 1 3 (2x 2 − 2x − 3), d(x) = x − 1. (3) u(x) = − 1 6 (2x 2 + 3x), v(x) = 1 6 (2x 3 + 5x 2 − 6), d(x) = 1. 3. ^_: 45 d(x) | f(x), d(x) | g(x), F d(x) . f(x)  g(x) fv]%, [# d(x) ! f(x)  g(x) fv^|. '(: d(x) = u(x)f(x) + v(x)g(x), 45 h(x) ∈ K[x], 4 h(x) | f(x), h(x) | g(x), h(x) | d(x). C, d(x) . f(x)  g(x) fv, 3 d(x) ! f(x)  g(x) fv^|. 4. ^_: 45 h(x) .!fI~, (f(x)h(x), g(x)h(x)) = (f(x), g(x))h(x). '(: d(x) = (f(x), g(x)) 6= 0, Dq u(x), v(x) N d(x) = u(x)f(x) + v(x)g(x). · 3 ·

所以 d(r)h(z)=u(z)f(x)h(r)+v(z)g(z)h(r). 又因d(e)h(r)|f(e)h(c,d(x)h(e)Ig(e)h(x,所以d(x)h(c)是f(e)h()与gc)h(r)的一个最大公因式 又因d(x),h()都是首一多项式,故d(x)h()也是首一多项式,从而 (f(z)h(x).g(r)h(x))=d(z)h(x)=(f(z).g(x))h(z). 又如d(x)=0,则f()=g()=0,原等式仍然成立 5.证明:如果f,g()不全为零,则 (97,9a)=1 证明:因fx),g(a)不全为零,故(f(z),g(x》卡0.所以 f(x) a(E) Ua.l)=(afa,..a f(a) (由习题4)两边消去(f(x,g()得 f(z) ('.9)=1 6.证明:如果f(x),g(x)不全为零,且 u(x)f(r)+v(r)g(x)=(f(x).g(x)). 则(u(),v(x)=1. 证明:因f(x),g(x)不全为零,故(f(x),9(x》≠0,因此 f() a(r) (e)().(+(e)).9()1. (u(),(》=1. 7.证明:如果(f(a),g(x》=1,(fz,h(x)=1,那么 (f(e),9(x)h(e)=1. 证明:存在u(r),(x,s(x),t(x),使 u(x)fr)+v(c)g()=-1, s(z)f(z)+t(z)h(z)=1. 所以 f(r)(u(r)s(r)f(z)+u(r)t(r)h(r)+5()u(r)g())+v()t()g()h(r)=1. (f(x),g(x)h(x)=1. 8.设(,…,m(),9h(,…,9()都是多项式且(f(,(》=1(位=1,…,mj= 1,··,n),证明 (f()f(小…fm(,g()()…gn(》=1 证明由(f(x,9(x》=1,可得((x),91(x)92(》-1,,(f(c,91(e)92(e)…9n(e)=1.从而 (h()2(9m(…9m(a)=1,(fi(af()f(,m()gm(》=,…, (fi(e)f(z)…fm(e),91(r)…g(e)=1. 9.证明:如果(f(),g(z》=1,那么(fe)+9,f()9(》=1 4

 d(x)h(x) = u(x)f(x)h(x) + v(x)g(x)h(x). C d(x)h(x) | f(x)h(x), d(x)h(x) | g(x)h(x),  d(x)h(x) ! f(x)h(x)  g(x)h(x) fv^|. C d(x), h(x) 2!!fI~, 3 d(x)h(x) ;!!fI~, IJ (f(x)h(x), g(x)h(x)) = d(x)h(x) = (f(x), g(x))h(x). C4 d(x) = 0, f(x) = g(x) = 0, r*:;. 5. ^_: 45 f(x), g(x) `y.{, µ f(x) (f(x), g(x)), g(x) (f(x), g(x))¶ = 1. '(:  f(x), g(x) `y.{, 3 (f(x), g(x)) 6= 0.  (f(x), g(x)) = µ f(x) (f(x), g(x)) (f(x), g(x)), g(x) (f(x), g(x)) (f(x), g(x))¶ = µ f(x) (f(x), g(x)) , g(x) (f(x), g(x)) ¶ (f(x), g(x)) (NO 4) @R+, (f(x), g(x)), O µ f(x) (f(x), g(x)) , g(x) (f(x), g(x)) ¶ = 1. 6. ^_: 45 f(x), g(x) `y.{, F u(x)f(x) + v(x)g(x) = (f(x), g(x)), (u(x), v(x)) = 1. '(:  f(x), g(x) `y.{, 3 (f(x), g(x)) 6= 0, l u(x) f(x) (f(x), g(x)) + v(x) g(x) (f(x), g(x)) = 1, (u(x), v(x)) = 1. 7. ^_: 45 (f(x), g(x)) = 1, (f(x), h(x)) = 1, [# (f(x), g(x)h(x)) = 1. '(: Dq u(x), v(x), s(x), t(x), N u(x)f(x) + v(x)g(x) = 1, s(x)f(x) + t(x)h(x) = 1,  f(x)(u(x)s(x)f(x) + u(x)t(x)h(x) + s(x)v(x)g(x)) + v(x)t(x)g(x)h(x) = 1, (f(x), g(x)h(x)) = 1. 8. f1(x), · · · , fm(x), g1(x), · · · , gn(x) 2!I~, F (fi(x), gj (x)) = 1 (i = 1, · · · , m; j = 1, · · · , n), ^_: (f1(x)f2(x)· · · fm(x), g1(x)g2(x)· · · gn(x)) = 1. '(:  (fi(x), gj (x)) = 1, @O (fi(x), g1(x)g2(x)) = 1, . . . , (fi(x), g1(x)g2(x)· · · gn(x)) = 1. IJ (f1(x)f2(x), g1(x)· · · gn(x)) = 1, (f1(x)f2(x)f3(x), g1(x)· · · gn(x)) = 1, . . . , (f1(x)f2(x)· · · fm(x), g1(x)· · · gn(x)) = 1. 9. ^_: 45 (f(x), g(x)) = 1, [# (f(x) + g(x), f(x)g(x)) = 1. · 4 ·

证明:由于(f(x,g(x》=1,所以 (fx)+g(x),g(x》=(fx),g(x》=1, (f(x)+g(x),fx)=(g(a),fx)=1, 因此 (f)+9(,f)g()=1 10.设fi(e)=af(x)+bg(e),91(e)=cf(x)+dg(a),且ad-bc≠0,证明: (x,ge》=(1(e91(e》 证明:由题设可得(fe),9(x》|(1(x),91(x).又 =ad-i+ad二na 所以 (f),())(f().g()). 又因((,91()与(f)g)的首项系数相同,故(f(,g(a》=(f(,91() 11.证明:如果f(x)与g()互素,那么f(xm)与g(xm)也互素. 证明由题设,存在多项式u(x,v()使 u(z)f(z)+v(z)g(x)=1. 所以 u(r")f(rm)+v(m)g(")=1. 故(f(xm),g(xm)》=1. 12.证明:对任意的正整数n,都有 (f(x),g(x)=(f严(x),g"(e) 证明:设(fa)g(x)=d(x,f(a)=dx)fi(),g()=d(x)g(r),则(fi(),g1(》=1. 由习题8可得 (f(x).g'(x)=1. 于是 (f严(x),g(z)=(d严(z)f(x),d严(x)g(c) =d严(e(UR(,g(e)=d严() =(f(x),9x)严 *13.试求xm-1与x-1的最大公因式 解:令d=(m,n,则根据习题10-2.9,x4-1|xm-1,4-1x-1. 设h(x)是xm-1与xn-1的公因式,则有 xm-1≡0(modh(e,x-1≡0(modh(c)一xm≡1(mod(c),x”≡1(modh(r). 由于d-(m,n,因此存在uv∈Z使得d-um+m. 2-xm+m1(modh()→x-10(modh(》. .5

'(:  (f(x), g(x)) = 1,  (f(x) + g(x), g(x)) = (f(x), g(x)) = 1, (f(x) + g(x), f(x)) = (g(x), f(x)) = 1, l (f(x) + g(x), f(x)g(x)) = 1. 10. f1(x) = af(x) + bg(x), g1(x) = cf(x) + dg(x), F ad − bc 6= 0, ^_: (f(x), g(x)) = (f1(x), g1(x)). '(: O @O (f(x), g(x)) | (f1(x), g1(x)). C f(x) = d ad − bc f1(x) − b ad − bc g1(x), g(x) = −c ad − bc f1(x) + a ad − bc g1(x),  (f1(x), g1(x)) | (f(x), g(x)). C (f1(x), g1(x))  (f(x), g(x)) !~sya, 3 (f(x), g(x)) = (f1(x), g1(x)). 11. ^_: 45 f(x)  g(x)  , [# f(x m)  g(x m) ; . '(: O , DqI~ u(x), v(x) N u(x)f(x) + v(x)g(x) = 1.  u(x m)f(x m) + v(x m)g(x m) = 1. 3 (f(x m), g(x m)) = 1. 12. ^_ : 45W y n, 2$ (f(x), g(x))n = (f n (x), gn (x)). '(: (f(x), g(x)) = d(x), f(x) = d(x)f1(x), g(x) = d(x)g1(x), (f1(x), g1(x)) = 1. NO 8 @O (f n 1 (x), gn 1 (x)) = 1. ! (f n (x), gn (x)) = (d n (x)f n 1 (x), dn (x)g n 1 (x)) = d n (x)(f n 1 (x), gn 1 (x)) = d n (x) = (f(x), g(x))n . ∗13. <L x m − 1  x n − 1 ^|. ): S d = (m, n), x-NO 10–2.9, x d − 1 | x m − 1, x d − 1 | x n − 1. h(x) ! x m − 1  x n − 1 , $ x m − 1 ≡ 0 (mod h(x)), xn − 1 ≡ 0 (mod h(x)) =⇒ x m ≡ 1 (mod h(x)), xn ≡ 1 (mod h(x)).  d = (m, n), lDq u, v ∈ Z NO d = um + vn. x d = x um+vn ≡ 1 (mod h(x)) =⇒ x d − 1 ≡ 0 (mod h(x)). · 5 ·

又设d=ms-nt,s,t≥0,则d+nt=ms.于是 xms -1=zd+nr -1=(zd -1)rnr+znr -1. 若f()∈Kz满足fx)|xm-1,f(e)|xn-1,则(fx,x)=1,且f(E)|xm-1,fx)|xt-1,于是 f四1(x2-1)x".由fg)与x互素可得fg川x4-1因此(xm-1,x-1)=x4-1,其中d=(m,. 14.证明此要可了可的次数都大于零,就可以适当为择适合等式 u(r)f(=)+v(z)g(r)=(f(z).g(z)) 的u()与v(),使 s<ts(2ase<s(oa) 9(x) 证明存在多项式s(a),t(〾)∈K可使 s()f)+t(x)g()-(f(,g(r)》 则 f(x) afx) g(x) 4=a9四+a 其中)=0或dgu国<dg可·记e=9四+则由円知 9E) "(Lr))+(). 由假设与积的次数都大于常,所以,)都不是零多项式于是 dg)<des r,)gl可j a(x) 由(*)知 f(x)\ g(x) des(uaa)=ds(va) 多而 deg<deg国,ga f() 习题10-4 1.设(f(x),m(》=1,证明:对如何的多项式g(),都存在多项式h(,使 h(r)f()=g(r)(mod m(r)). 证明:由假设,存在u(),(e)∈K,使 u(ef)+(e)m()=1 所以 g(r)u(r)f(z)+g(x)v(r)m(r)=g(z). 于是 g(z)u(r)f()=g()(mod m(r)). 6

C d = ms − nt, s, t > 0, d + nt = ms. ! x ms − 1 = x d+nr − 1 = (x d − 1)x nr + x nr − 1.  f(x) ∈ K[x]  f(x) | x m − 1, f(x) | x n − 1, (f(x), x) = 1, F f(x) | x ms − 1, f(x) | x nt − 1, ! f(x) | (x d − 1)x nr .  f(x)  x  @O f(x) | x d − 1. l (x m − 1, xn − 1) = x d − 1, -* d = (m, n). ∗14. ^_: lE f(x) (f(x), g(x)) , g(x) (f(x), g(x)) y2|{, T@$P./$% u(x)f(x) + v(x)g(x) = (f(x), g(x))  u(x)  v(x), N deg u(x) < deg µ g(x) (f(x), g(x))¶ , deg v(x) < deg µ f(x) (f(x), g(x))¶ . '(: DqI~ s(x), t(x) ∈ K[x] N s(x)f(x) + t(x)g(x) = (f(x), g(x)). s(x) f(x) (f(x), g(x)) + t(x) g(x) (f(x), g(x)) = 1. (*) S s(x) = g(x) (f(x), g(x)) q(x) + u(x), -* u(x) = 0 k deg u(x) < deg g(x) (f(x), g(x)) . G v(x) = f(x) (f(x), g(x)) q(x) + t(x),  (*) u, u(x) f(x) (f(x), g(x)) + v(x) g(x) (f(x), g(x)) = 1. (**) 0 , f(x) (f(x), g(x))  g(x) (f(x), g(x)) y2|{,  u(x), v(x) 2`!{I~. ! deg u(x) < deg g(x) (f(x), g(x)) .  (**) u deg µ u(x) f(x) (f(x), g(x)) ¶ = deg µ v(x) g(x) (f(x), g(x)) ¶ , IJ deg v(x) < deg f(x) (f(x), g(x)) . % & 10–4 1. (f(x), m(x)) = 1, ^_: 4LI~ g(x), 2DqI~ h(x), N h(x)f(x) ≡ g(x) (mod m(x)). '(: 0 , Dq u(x), v(x) ∈ K[x], N u(x)f(x) + v(x)m(x) = 1.  g(x)u(x)f(x) + g(x)v(x)m(x) = g(x). ! g(x)u(x)f(x) ≡ g(x) (mod m(x)). · 6 ·

时h(a)=g(a)u(x),则 h(c)fz)三g(c)(modm(x》 *2.设m1(x),…,m,(x)为一组可可互素的多项式,证明:对如求的多项式()…,(x,都存在 多项式F(,使 F(e)=f(x)(modm4(e》, i=1.,8 证明时M m.()..m.().B.(=得则Rme)=a i≠方.存在()使(使得1) hi()Ri(r)fi()(mod mi(r)) 时 Fe)=∑h:(e)R(e, Fa)=∑,(e)R,(e)(modm(e》 =h(r)Rx()(mod mx(x)) 三fa(e)(mod mk(e》. 3.设m()为复系数多项式条m(0)≠0.证明:存在复系数多项式f(x),使 fP(x)≡x(modm(r》. 证明(a)首零证明对如果的a≠0,同余式 fP()三x(mod(x-a)) 有解设√a是a的如果一个平方根,则 (红-a)m=(丘-v@(vE+va)m=(W丘-vam(v丘+vam =(h(z)vi-g(r))(h(z)vi+g(z))=h2(z)r-g2(z). 于是 g2(r)=h2(r)r (mod(z-a)") 而h(a)va+g(a)=(Va+V回m≠0,而h(a)va-g(a)=(Wa-Vam=0,因此g(a)h(a)≠0,多而 (h(r,(红-a)m)=l,存在h1(a)∈K回使h()h()三1(mod(c-a)m).于是 (hi(r)g(z))2=z (mod (x-a)") 取fx)=h(e)9(e),则有 f(x)≡x(mod(x-a"). (b)设m()=(c-a)m(z-a2)m2…(c-a,)m,a≠a对i≠i.则(c-a1m,…,(z-a,)m 可可互素.由(a,存在()∈K可,使 f2(r)=r (mod (r-ai)"M). 由使得2,存在f(x)使 f)三f(a)(mod(-a)m) 于是 f()≡x(mod(-a)m) 7

S h(x) = g(x)u(x), h(x)f(x) ≡ g(x) (mod m(x)). ∗2. m1(x), · · · , ms(x) .f]@@ I~, ^_: 4LI~ f1(x), · · · , fs(x), 2Dq I~ F(x), N F(x) ≡ fi(x) (mod mi(x)), i = 1, · · · , s. '(: S M(x) = m1(x)m2(x)· · · ms(x), Ri(x) = M(x) mi(x) . (Ri(x), mi(x)) = 1, mj (x) | Ri(x), i 6= j. Dq hi(x) N (NO 1) hi(x)Ri(x) ≡ fi(x) (mod mi(x)) S F(x) = Xs i=1 hi(x)Ri(x), F(x) ≡ Xs i=1 hi(x)Ri(x) (mod mk(x)) ≡ hk(x)Rk(x) (mod mk(x)) ≡ fk(x) (mod mk(x)). ∗3. m(x) .syI~, F m(0) 6= 0. ^_: DqsyI~ f(x), N f 2 (x) ≡ x (mod m(x)). '(: (a) !{^_45 a 6= 0, am f 2 (x) ≡ x (mod (x − a) m) $. √ a ! a 45fv/>x, (x − a) m = ((√ x − √ a)(√ x + √ a))m = (√ x − √ a) m( √ x + √ a) m = (h(x) √ x − g(x))(h(x) √ x + g(x)) = h 2 (x)x − g 2 (x). ! g 2 (x) ≡ h 2 (x)x (mod (x − a) m) J h(a) √ a + g(a) = (√ a + √ a) m 6= 0, J h(a) √ a − g(a) = (√ a − √ a) m = 0, l g(a)h(a) 6= 0, IJ (h(x),(x − a) m) = 1, Dq h1(x) ∈ K[x] N h1(x)h(x) ≡ 1 (mod (x − a) m). ! (h1(x)g(x))2 ≡ x (mod (x − a) m) Q f(x) = h1(x)g(x), $ f 2 (x) ≡ x (mod (x − a) m). (b) m(x) = (x − a1) m1 (x − a2) m2 · · ·(x − as) ms , ai 6= aj  i 6= j. (x − a1) m1 , · · · ,(x − as) ms @@ .  (a), Dq fi(x) ∈ K[x], N f 2 i (x) ≡ x (mod (x − ai) mi ). NO 2, Dq f(x) N f(x) ≡ fi(x) (mod (x − ai) mi ) ! f 2 (x) ≡ x (mod (x − ai) mi ) · 7 ·

由(红-a1)m,…,(z-a)m两两互素可得 f2(x)≡x(modm(e). 习题10-5 1.证明:g严()fm()→g()f 证明:设 f(x)=ap(z(a)…p(a), g(z)=bp(()..(). 其中a,b∈K,(),…,P(e)是两两互素的不可约多项式,且l4,k≥0,i=1,…,.则 g()|f(x)←→≤l4,i=1,…,s ←mk≤ml,i=1,…,s ←→g严()|fm() 2.设f(a),g(a)∈K[,且有分解式 f)=ap(e()…pg(,r1≥0,i=1,…,5s g()=咖(ep吃()(a,t专≥0,i=1,…,, 其中(回),…,P,(口)是不同的是一不可约多项式证明 f,ge=p(epn(国…mrew) 证明:令m:=max(r,),i=l,…,8 m(x)=p(ep(…p( 则因rn≤m,t≤m,因此 fx)lm(,g()|m(r)→f(x,gr月lm(x) 设s()∈K]是fr),g(x)的公倍式则有 s()=}(x)(e)…☆(r)h(c),L4≤r,4≤t,(h(r),p(x》=1,i=1,…,s 于是 ≥maxr,t),i=l,…,s,→m()ls() 因此 f)g=p(p2(…p( 3.设fe),9(x)∈K口都是是一多项式,证明: f(x)ax 证明设 f)=(e)p()…pg(,≥0,i=1…,s g()=片(()小…(,≥0,i=1,…,s, 其中p(),,P()是不同的是一不可约多项式令 mi=max(ri,ti),min(ri,ti), i=1,…,8 8

 (x − a1) m1 , · · · ,(x − as) ms @@ @O f 2 (x) ≡ x (mod m(x)). % & 10–5 1. ^_: g m(x) | f m(x) ⇐⇒ g(x) | f(x). '(: f(x) = ap l1 1 (x)p l2 2 (x)· · · p ls s (x), g(x) = bpk1 1 (x)p k2 2 (x)· · · p ks s (x), -* a, b ∈ K, p1(x), · · · , ps(x) !@@ `@I~, F li , ki > 0, i = 1, · · · , s. g(x) | f(x) ⇐⇒ ki 6 li , i = 1, · · · , s ⇐⇒ mki 6 mli , i = 1, · · · , s ⇐⇒ g m(x) | f m(x). 2. f(x), g(x) ∈ K[x], F$ f(x) = ap r1 1 (x)p r2 2 (x)· · · p rs s (x), ri > 0, i = 1, · · · , s; g(x) = bpt1 1 (x)p t2 2 (x)· · · p ts s (x), ti > 0, i = 1, · · · , s, -* p1(x), · · · , ps(x) !`a!f`@I~. ^_: [f(x), g(x)] = p max(r1,t1) 1 (x)p max(r2,t2) 2 (x)· · · p max(rs,ts) s (x). '(: S mi = max(ri , ti), i = 1, · · · , s. m(x) = p m1 1 (x)p m2 2 (x)· · · p ms s (x),  ri 6 mi , ti 6 mi , l f(x) | m(x), g(x) | m(x) =⇒ [f(x), g(x)] | m(x). s(x) ∈ K[x] ! f(x), g(x) , $ s(x) = p l1 1 (x)p l2 2 (x)· · · p ls s (x)h(x), li 6 ri , li 6 ti , (h(x), pi(x)) = 1, i = 1, · · · , s. ! li > max(ri , ti), i = 1, · · · , s, =⇒ m(x) | s(x). l [f(x), g(x)] = p m1 1 (x)p m2 2 (x)· · · p ms s (x). 3. f(x), g(x) ∈ K[x] 2!!fI~, ^_: [f(x), g(x)] = f(x)g(x) (f(x), g(x)). '(: f(x) = p r1 1 (x)p r2 2 (x)· · · p rs s (x), ri > 0, i = 1, · · · , s; g(x) = p t1 1 (x)p t2 2 (x)· · · p ts s (x), ti > 0, i = 1, · · · , s, -* p1(x), · · · , ps(x) !`a!f`@I~. S mi = max(ri , ti), li = min(ri , ti), i = 1, · · · , s. · 8 ·

名 feg(国)=p+()p+()…p2t(工, (f(x),9(x》=}(ep2(x)…g(e, 由于n+-k=m4,i=1,…,8.因此 4.求下列多项式的最小公倍式: (1)fe)-x-4r3+1g()-x3-3x2+1: (2)f()=x4-x-1+i.g()=x2+1. 解:()由于(f(a,g()=1,[f(x,9(c=f)g()=x2-7x+12x5+x4-3x3-3x2+1 (2)由于(fx),9(x》=x-if(r),9(x川=f(x(x+i)=x3+ir-x2-x-(1+) 5.设()首次数大于零的多项式.证明:如果对于任何多项式fa),9(x,由()f()()可以 推出p()|f(z)或者(x)|g(x),则()首不可约多项式 证明:若()可约,则存在次数小于p()的非常数多项式f(),9)使(x)=fe9(c).从而 p(x)If(x)g(x).但因 degf(z)<degp(), degg(z)<degp(r). ()f,p(红)1(x,与假设矛盾,因此e)不可约. 6.证明:次数大于0的首一多项式f(x)首某一不可约多项式的方幂的充分必要条件首,对任意的 多项式g()必有((x),g(x)=1,或者对某一正整数m,∫(x)1g严(x. 证明(→)设f)=p严(,其中)不可约,则若g()∈K国满足p()g,有 f(x)=p(x)lg(x). 如()g(e),则(p(x,g()=1,从而(p(),g(》=1,即(f(x,g()=1 (仁)设p()首f(x)的一个首一不可约因子,则(p(x),f(x)-(x),从而存在某个正整数m,使 f()p(),这说明()首f)的唯一不可约因子.所以f()=甲()又因f),)的首项系数都 首1,故c=1.从而f(x)=p(z). *7.证明:次数大于0的首一多项式f)首某一不可约多项式的方幂的充分必要条件首,对任意的 多项式g(),h(),由f(x)川g(r)h(x)可以推出f(x)川g(),或者对某一正整数m,f(z)hm(e). 证明:(→)设fx)=p”(),其中p()首首一不可约多项式,则由f)g(xh(,可得p()】 g(z)h(x,从而(x)Ig(a)或p(x)1h().于首f(e)=pm()|g"(x)或f(x)=p严(z)1hm(e. (=)设()首f)的一个首一不可约因子,则f)=p()().从而f)I()f(a.而 f(x)十1(x),从而存在某个正整数m,使f(x)|p严(x,这说明p(x)首f(x)的唯一不可约因子.所以 f()=cp().又因f(),p()的首项系数都首1,故c=1.从而f()=p() 习题10-6 1.判别下列有理系数多项式有无重因式,若有,则求出重因式 (1)fx)-x5-10x3-20x2-15x-4 (2)f(x)=x4-4r3+16x-16 (3)fx)=x5-6x4+16x3-24x2+20x-8: (④f)-x6-15r4+8x3+51r2-72r+27 9

f(x)g(x) = p r1+t1 1 (x)p r2+t2 2 (x)· · · p rs+ts s (x), (f(x), g(x)) = p l1 1 (x)p l2 2 (x)· · · p ls s (x),  ri + ti − li = mi , i = 1, · · · , s. l f(x)g(x) (f(x), g(x)) = p m1 1 (x)p m2 2 (x)· · · p ms s (x) = [f(x), g(x)]. 4. L,I~^": (1) f(x) = x 4 − 4x 3 + 1, g(x) = x 3 − 3x 2 + 1; (2) f(x) = x 4 − x − 1 + i. g(x) = x 2 + 1. ): (1)  (f(x), g(x)) = 1, [f(x), g(x)] = f(x)g(x) = x 7 − 7x 6 + 12x 5 + x 4 − 3x 3 − 3x 2 + 1. (2)  (f(x), g(x)) = x − i, [f(x), g(x)] = f(x)(x + i) = x 5 + ix 4 − x 2 − x − (1 + i). 5. p(x) !y|{I~. ^_: 454LI~ f(x), g(x),  p(x) | f(x)g(x) @ 1 p(x) | f(x) k2 p(x) | g(x), p(x) !`@I~. '(:  p(x) @, Dqy" p(x) z`yI~ f(x), g(x) N p(x) = f(x)g(x). IJ p(x) | f(x)g(x). A deg f(x) 'CDEFG!, 45 I~ g(x) D$ (f(x), g(x)) = 1, k23fW y m, f(x) | g m(x). '(: (⇒) f(x) = p m(x), -* p(x) `@,  g(x) ∈ K[x]  p(x) | g(x), $ f(x) = p m(x) | g m(x). 4 p(x) - g(x), (p(x), g(x)) = 1, IJ (p m(x), g(x)) = 1, K (f(x), g(x)) = 1. (⇐) p(x) ! f(x) fv!f`@ , (p(x), f(x)) = p(x), IJDq3vW y m, N f(x) | p m(x), k_ p(x) ! f(x) 4f`@ .  f(x) = cpr (x). C f(x), p(x) !~sy2 ! 1, 3 c = 1. IJ f(x) = p r (x). ∗7. ^_: y| 0 !fI~ f(x) !3f`@I~>'CDEFG!, 45 I~ g(x), h(x),  f(x) | g(x)h(x) @1 f(x) | g(x), k23fW y m, f(x) | h m(x). '(: (⇒) f(x) = p m(x), -* p(x) !!f`@I~,  f(x) | g(x)h(x), @O p(x) | g(x)h(x), IJ p(x) | g(x) k p(x) | h(x). ! f(x) = p m(x) | g m(x) k f(x) = p m(x) | h m(x). (⇐) p(x) ! f(x) fv!f`@ , f(x) = p(x)f1(x). IJ f(x) | p(x)f1(x). J f(x) - f1(x), IJDq3vW y m, N f(x) | p m(x), k_ p(x) ! f(x) 4f`@ .  f(x) = cpr (x). C f(x), p(x) !~sy2! 1, 3 c = 1. IJ f(x) = p r (x). % & 10–6 1. },$￾syI~$ w, $, Lw: (1) f(x) = x 5 − 10x 3 − 20x 2 − 15x − 4; (2) f(x) = x 4 − 4x 3 + 16x − 16; (3) f(x) = x 5 − 6x 4 + 16x 3 − 24x 2 + 20x − 8; (4) f(x) = x 6 − 15x 4 + 8x 3 + 51x 2 − 72x + 27. · 9 ·

解:(1)x+1,4重 (2)x-2,3重 (3x2-2x+2,2重 (④x+3,2重x-1,3重 2.a,b意满足什么条件,下列多项式有重盾式? (1)f)=x3+3a+b (②)fm)=x+4ar+b. 解:(1)当a=b-0有3重盾式x,当4a3--2且a≠0,有2重盾式2ax+b. (2)当a=b=0有4重盾式五,当27a1=且a≠0,有2重盾式3ar+b. 3.设()首f)的k重盾式,能否说()首f()的k+1重盾式为什么? 解:不能.盾为又可能f'()唯一重盾式者不首f()的盾式例如fe)=x-1,f(e)=4r 4.证明:如果(f(),"(》=1,那么,f)的重盾式者首f)的二重盾式 幂明:由于(f(x),f”()=1,f'(z)的唯一盾式者不首”(x)的盾式.设p()首f)的重盾式,则 p)f'(,于首p()"(),说明()首f()的单盾式某n)首f)的二重盾式 5.证明:K回中不可约多项式p()首f(z)∈K的(k≥1)重盾式的充分必要条件首p(x)首 f,'(x,…,fk-()的盾式但不首()的盾式 幂明:(→)对k用归纳法.当k=1时结论显然成立.现设结论对k-1成立.设(x)首f(x)的k 重盾式则f)=()g(e),其中(),g》=1.则 f()=kp*-1(x)g()+p()g'()=p*-1(z)(kg()+p()d()). 由((,9(》=1可得((),kg)+p(x)g(x)=1,盾此()首fP()的k-1重盾式根其归纳假设 p()首'(),…,f-()的盾式,但不首f(a)的盾式.而)首fz)的盾式首已知的 ()如()首f,f,…,f-()的盾式但不首f(国的眉式,则p()首f-)的 重盾式进而,p()首f-2()的二重盾式,依次类推,可知x)首f(x)的重盾式 6.试求多项式x1999+1小以(-12所得余式 解:设x19%+1=(口-1)g(x)+ax+b,则两边求导后得 1999r1998=2(x-1)4(a)+(c-12g()+a. 以x=1代无倍两式,得 a=1999, b=-1997 某所求余式为1999x-1997. 习题10-7 1.求下列多项式的公共根: (1)f)=x4+2x2+9,9)=x4-4r3+4r2-9: (2)fm)=x3+22+2红+1,g()=x+x3+2x2+x+1. 解:(1)1+②i,1-v②i. 2)-1+.-1- 2.如果(-1)2|Ar+Bx2+1,求A,B 解A=1,B=-2. 3.已知x-3x3+6r2+ar+b能解z2-1整小,求a,b .10:

): (1) x + 1, 4 w. (2) x − 2, 3 w. (3) x 2 − 2x + 2, 2 w. (4) x + 3, 2 w, x − 1, 3 w. 2. a, b 5"#FG, ,I~$w? (1) f(x) = x 3 + 3ax + b; (2) f(x) = x 4 + 4ax + b. ): (1) P a = b = 0 $ 3 w x, P 4a 3 = −b 2 F a 6= 0, $ 2 w 2ax + b. (2) P a = b = 0 $ 4 w x, P 27a 4 = b 3 F a 6= 0, $ 2 w 3ax + b. 3. p(x) ! f 0 (x)  k w, U p(x) ! f(x)  k + 1 w, ."#? ): `U. .C@U f 0 (x) 4fw2`! f(x) . ?4 f(x) = x 4 − 1, f 0 (x) = 4x 3 . 4. ^_: 45 (f 0 (x), f00(x)) = 1, [#, f(x) w2! f(x) w. '(:  (f 0 (x), f00(x)) = 1, f 0 (x) 4f2`! f 00(x) . p(x) ! f(x) w, p(x) | f 0 (x), ! p(x) - f 00(x), _ p(x) ! f 0 (x) , 3 p(x) ! f(x) w. 5. ^_: K[x] *`@I~ p(x) ! f(x) ∈ K[x]  k (k > 1) wCDEFG! p(x) ! f(x), f0 (x), · · · , f(k−1)(x) , A`! f (k) (x) . '(: (⇒)  k X67q. P k = 1 S898:;. 9 89 k − 1 :;. p(x) ! f(x)  k w, f(x) = p k (x)g(x), -* (p(x), g(x)) = 1. f 0 (x) = kpk−1 (x)g(x) + p k (x)g 0 (x) = p k−1 (x)(kg(x) + p(x)g 0 (x)).  (p(x), g(x)) = 1 @O (p(x), kg(x) + p(x)g 0 (x)) = 1, l p(x) ! f 0 (x)  k − 1 w. x-670 , p(x) ! f 0 (x), · · · , f(k−1)(x) , A`! f (k) (x) . J p(x) ! f(x) !tu. (⇐) 4 p(x) ! f(x), f0 (x), · · · , f(k−1)(x) , A`! f (k) (x) , p(x) ! f (k−1)(x) f w, :J, p(x) ! f (k−2)(x) w, ;<1, @u p(x) ! f(x)  k w. 6. <LI~ x 1999 + 1 " (x − 1)2 Om. ): x 1999 + 1 = (x − 1)2 q(x) + ax + b, @RL=O 1999x 1998 = 2(x − 1)q(x) + (x − 1)2 q(x) + a.  x = 1 b @, O a = 1999, b = −1997. 3Lm. 1999x − 1997. % & 10–7 1. L,I~x: (1) f(x) = x 4 + 2x 2 + 9, g(x) = x 4 − 4x 3 + 4x 2 − 9; (2) f(x) = x 3 + 2x 2 + 2x + 1, g(x) = x 4 + x 3 + 2x 2 + x + 1. ): (1) 1 + √ 2i, 1 − √ 2i. (2) −1 + √ 3i 2 , −1 − √ 3i 2 . 2. 45 (x − 1)2 | Ax4 + Bx2 + 1, L A, B. ): A = 1, B = −2. 3. tu x 4 − 3x 3 + 6x 2 + ax + b U) x 2 − 1 ", L a, b. · 10 ·

共20页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档