复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 10 Angular momentum

Chapter 10 Angular momentum
Chapter 10 Angular momentum

10-1 Angular momentum of a particle 1. Definition Consider a particle of mass m and linear momentum p at a position relative to the origin o of an inertial frame we define the angular momentum"lof the particle with respect to the origin o to be =r×P (10-1)
10-1 Angular momentum of a particle 1. Definition Consider a particle of mass m and linear momentum at a position relative to the origin o of an inertial frame we define the “angular momentum” of the particle with respect to the origin o to be (10-1) → P → r → L → → → L = r P x z y m → P → r

Its magnitude is L=rp sin 6 (10-2) where 0 is the smaller angle between r and p, we also can write it as Note that for convenience and p are in Xy plane
Its magnitude is (10-2) where is the smaller angle between and , we also can write it as Note that , for convenience and are in xy plane. L = rp sin = ⊥ = ⊥ L pr rp → P → r → P → r

2.The relation between torque and angular momentum Differentiating Eq(10-1) we obtain l dr x P+rx ∑F=x(106) Here ar dr the×P=yXP=0 d p and dt ∑ Eq(10-6) states that "the net torque acting on a particle is equal to the time rate of change of its angular momentum
2. The relation between torque and angular momentum Differentiating Eq(10-1) we obtain (10-6) Here , the → → → → → → → → = + = rF = dt d P P r dt d r dt d L → → = v dt d r = = 0 → → → → P v P dt d r and Eq(10-6) states that “the net torque acting on a particle is equal to the time rate of change of its angular momentum. → → = F dt d P

Sample pf roblem 10-1 A particle of mass m is released from rest at point p (a)Find torque and angular momentum with respect to P origin o (b show that the relation dl ∑τ yield a correct result mg:e
Sample problem 10-1 A particle of mass m is released from rest at point p (a) Find torque and angular momentum with respect to origin o (b) Show that the relation yield a correct result . b o y P x → r m mg dt d L → → =

Solution (a)t=mgbzo (b is the moment arm) L=r×mv= bmgtz (b )dL bmg=t
Solution: (a) ( b is the moment arm) (b) → = 0 mgb z → → → = = 0 L r m v bmgt z → → = = 0 bmg z dt d L

10-2 Systems of particles 1. To calculate the total angular momentum L of a system of particle about a given point, we must add vectorially the angular momenta of all the individual particles about this point. L=L1+L2+…LN=∑ (10-8) As time goes on, L may change. That is dl d ∑
10-2 Systems of particles 1.To calculate the total angular momentum of a system of particle about a given point, we must add vectorially the angular momenta of all the individual particles about this point. (10-8) As time goes on, may change. That is → L = → → → → → = + + = N n L L L LN Ln 1 1 2 → → → → = + L + = n dt d L dt d dt d L 1 2 → L

Total internal torque is zero because the torque resulting from each internal action reaction force pair is zero. Thus ∑n=∑ →dL (10-9) That is: the net external torque acting on a system of particles is equal to the time rate of change of the total angular momentum of the system Note that: (1) the torque and the angular momentum must be calculated with respect to the same origin of an inertia reference frame (2)Eg(10-9) holds for any rigid body
Total internal torque is zero because the torque resulting from each internal action- reaction force pair is zero. Thus (10-9) That is: “the net external torque acting on a system of particles is equal to the time rate of change of the total angular momentum of the system.” Note that: (1) the torque and the angular momentum must be calculated with respect to the same origin of an inertia reference frame. dt d L n ext → → → = = (2) Eq(10-9) holds for any rigid body

dAndo dl ∥/ P△P Suppose a force F acts on a particle which moves with P+△P momentum p .We can △P resolve f into two components P as shown in Fig 10-3: Fig 10-3 The component Fu gives a change in momentum A pu which changes the magnitude of p, on the other hand the f gives an increment ap that changes the direction of p
2. and Suppose a force acts on a particle which moves with momentum . We can resolve into two components, as shown in Fig 10-3: dt d P F → → = dt d L → → = → F → P → P// → P → P → F// → F⊥ → P⊥ → ⊥ → P+ P → F Fig 10-3 The component gives a change in momentum , which changes the magnitude of ; on the other hand, the gives an increment that changes the direction of . → F// → → p// → P F⊥ → → P⊥ P

The same analysis holds for the action of a →△L torque t As as shown in Fig 10-4. In this case Ai must be parallel to t We once again resolve T into two components∥L andt⊥ L. The component ∥/ ∥/ changes thei in magnitude ∥ but not in direction(Fig 10 L+△L 4a). The component△ gives an increment△L1⊥L which changes the direction of L but not its magnitude Fig 10-4 (Fig10-4b)
(a) (b) → // → ⊥ → L → L → L// → L⊥ → ⊥ → L+ L We once again resolve into two components and . The component changes the in magnitude but not in direction (Fig 10- 4a ). The component gives an increment , which changes the direction of but not its magnitude (Fig10-4b). → → // // L → → ⊥ ⊥ L → L → L → ⊥ → → L⊥ ⊥ L Fig 10-4 The same analysis holds for the action of a torque , as shown in Fig 10-4. In this case must be parallel to . t L = → → → L → → → //
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 20 The special theory of relativity.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 24 Entropy and the second law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 18 Wave Motion.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 14 Gravitation.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.4 热力学第二定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.3 循环过程 卡诺循环.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.2 理想气体的等温过程和绝热过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.1 理想气体的等容过程和等压过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.2 热力学第一定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.1 准静态过程 功 热量.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.3 麦克斯韦气体分子速率分布定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.2 理想气体的压强公式.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.1 状态、过程与理想气体.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)3.3 完全弹性碰撞 完全非弹性碰撞.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)3.1-3.2 功与功率、几种常见力的功.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)2.6.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)2.5 角动量定理角动量守恒定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)2.4 转动惯量和力矩.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)2.3 动量守恒定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)2.2.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 6 Momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 5 Applications of Newton’s Law.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 3 Force and Newton’s laws.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 21 Temperature.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 0 Preface.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 2 Motion in one dimension.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 1 Measurement.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.11 Energy I:Work and kinetic energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.12 Energy II:Potential energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 23 The first law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 9 Rotational dynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 17 Oscillations.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 22 Molecular properties of gases.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 19 Sound waves.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 8 Rotational kinematics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 7 Systems of particles.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 4 Motion in two and three dimensions.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.13 Energy III:Conservation of energy.ppt
- 复旦大学:《高分子物理》课程电子讲义_第一章 导论、第二章 高分子的大小和形状.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 3 Polymer Solutions、Chapter 4 Multi-component Polymer Systems.pdf