复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 0 Preface

Chapter Preface Introduction to Physics Introduction to vectors Introduction to calculus(微积分)
Chapter 1Chapter 1 Measurment ➢ Introduction to Physics ➢ Introduction to Vectors ➢ Introduction to Calculus(微积分) Chapter 0 Preface

Chapter 0 Preface Introduction to Physics (See动画库力学夹绪论exe) 1) Objects studied in physics 2) Methodology for studying physics 3)Some other key points
Chapter 1Chapter 1 Measurment Chapter 0 Preface ➢ Introduction to Physics 1) Objects studied in physics 2) Methodology for studying physics 3) Some other key points (See 动画库\力学夹\绪论.exe)

Chapter 0 Preface Introduction to vectors A scalar is a simple physical quantity that does not depend on direction mass, temperature, volume, work A vector is a concept characterized by a magnitude and a direction force, displacement, velocity
Chapter 1Chapter 1 Measurment Chapter 0 Preface ➢ Introduction to Vectors A scalar is a simple physical quantity that does not depend on direction. mass, temperature, volume, work… A vector is a concept characterized by a magnitude and a direction. force, displacement, velocity…

Chapter 0 Preface 1)Representation of vectors (See动画库力学夹0-4矢量运算exe) 2) Addition and subtraction of vectors (See动画库力学夹0-4矢量运算exe) 3)Dot and cross products
Chapter 1Chapter 1 Measurment Chapter 0 Preface 1) Representation of vectors 2) Addition and subtraction of vectors 3) Dot and cross products (See 动画库\力学夹\0-4矢量运算.exe) (See 动画库\力学夹\0-4矢量运算.exe)

Chapter 0 Preface 31) Dot product: A·B=A|·|B|cos(O) B B Bcos(0) B No problem Bib>兀 /6
Chapter 1Chapter 1 Measurment θ A B θ A B ? ? Chapter 0 Preface A B | A| | B| cos(θ) 3.1) Dot product: = θ A B θ A B Bcos() ) ( Acos No problem, if θ

Chapter 0 Preface A·B=B.A AA=A Prove it? A(B+C)=A·B+AC A=A2+4+Ak) A·B=? B=Bi+Bj+Bk A·B=(A1i+A1j+Ak)·(B,i+B,j+Bk) AB+AB+aB AB=AB+A,B+A
Chapter 1Chapter 1 Measurment Chapter 0 Preface A A i A j A k x y z = + + B B i B j B k x y z = + + AB = ? A B (A i A j A k) (B i B j B k) x y z x y z = + + + + = Ax Bx + Ay By + Az Bz A B = Ax Bx + Ay By + Az Bz A B B A = 2 2 A A = A| = A | A B C A B A C ( + ) = + Prove it?

Chapter 0 Preface 3. 2)Cross product: AxB= ABsin(e)n The length of A X B can be interpreted as the area of the parallelogram having A and B as sides n is a unit vector perpendicular to both a and B A,B, and n also becomes a right handed system. AxBb≤兀 AB,A×B=0 B A⊥B,|AxB=AB 0 Scalar triple product A(B×C) B×A=-4×B
Chapter 1Chapter 1 Measurment Chapter 0 Preface 3.2) Cross product: A B ABsin n = () is a unit vector perpendicular to both and . , , and also becomes n a right handed system. n The length of × can be interpreted as the area of the parallelogram having A and B as sides. A B A B A B A B A B n B A -A B = θ If A B,| A B| AB If A//B, A B 0 ⊥ = = Scalar triple product: A(BC) = ?

Chapter 0 Preface A=Ai+A,j+Ak A×B=? B=Bi+Bi+Bk A×B=(41i+A+A)×(B1+B,j+B2k) (A, B.-AB)i+(AB-AB).j +(ABy-A B k 7k|=(A,B:-AB,)元 A×B=A.A,A +(A B-A B.j Br By B+(ABy-A, B)k
Chapter 1Chapter 1 Measurment Chapter 0 Preface A A i A j A k x y z = + + B B i B j B k x y z = + + A B = ? A B (A i A j A k) (B i B j B k) x y z x y z = + + + + A B A B i A B A B j y z z y z x x z = ( − ) + ( − ) A B A B k x y y x + ( − ) x y z x y z B B B A A A i j k A B = A B A B j z x x z + ( − ) A B A B k x y y x + ( − ) A B A B i y z z y = ( − )

Chapter 0 Preface Introduction to calculus(微积分) 1)Limit of a function lin f(x-L Cose to zes estd b x→>c making x sufficiently close to c The limit of f of X, as X approaches C, is L Note that this statement can be true even if f(c)* lor f(x) is not defined at c EXample: f(x) imf(x)=x+1|1=1=2 x-1
Chapter 1Chapter 1 Measurment Chapter 0 Preface ➢ Introduction to Calculus(微积分) 1) Limit of a function f x L x c = → lim ( ) ƒ(x) can be made to be as close to L as desired by making x sufficiently close to c. “The limit of ƒ of x, as x approaches c, is L." Note that this statement can be true even if f (c) L or ƒ(x) is not defined at c. 1 1 ( ) 2 − − = x x Example: f x lim ( ) 1| 1 2 1 = + = = → x x f x x

Chapter 0 Preface 2) Derivative of a function(函数的导数) Motion with constant Motion with changing velocity speed 2 v() S(2)-s(41) v()2 S(2)-S(1) t2-t1
Chapter 1Chapter 1 Measurment Chapter 0 Preface 2) Derivative of a function(函数的导数) • Motion with constant velocity t s t1 t2 2 1 2 1 ( ) ( ) ( ) t t s t s t v t − − = t s t1 t2 • Motion with changing speed 2 1 2 1 ( ) ( ) ( ) t t s t s t v t − − ? =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 21 Temperature.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 3 Force and Newton’s laws.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 5 Applications of Newton’s Law.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 6 Momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 10 Angular momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 20 The special theory of relativity.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 24 Entropy and the second law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 18 Wave Motion.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 14 Gravitation.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.4 热力学第二定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.3 循环过程 卡诺循环.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.2 理想气体的等温过程和绝热过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.1 理想气体的等容过程和等压过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.2 热力学第一定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.1 准静态过程 功 热量.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.3 麦克斯韦气体分子速率分布定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.2 理想气体的压强公式.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.1 状态、过程与理想气体.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)3.3 完全弹性碰撞 完全非弹性碰撞.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)3.1-3.2 功与功率、几种常见力的功.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 2 Motion in one dimension.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 1 Measurement.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.11 Energy I:Work and kinetic energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.12 Energy II:Potential energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 23 The first law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 9 Rotational dynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 17 Oscillations.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 22 Molecular properties of gases.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 19 Sound waves.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 8 Rotational kinematics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 7 Systems of particles.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 4 Motion in two and three dimensions.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.13 Energy III:Conservation of energy.ppt
- 复旦大学:《高分子物理》课程电子讲义_第一章 导论、第二章 高分子的大小和形状.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 3 Polymer Solutions、Chapter 4 Multi-component Polymer Systems.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapt. 5 Amorphous State of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 6 Condensed States of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 7 Mechanics Properties of Polymers.pdf
- 《化学物理学报》:半导体光催化研究进展与展望.pdf
- 《固体物理学》课程教学资源(课外阅读材料)Sommerfeld模型的原始文献(德文).pdf