复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.11 Energy I:Work and kinetic energy

Ch. 11 Energy I: Work and kinetic energy ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy Ch. 11 Energy I: Work and kinetic energy

11-1 Work and energy Example: If a person pulls an object uphill. After some time, he becomes tired and stops We can analyze the forces exerted in this problem based on Newtons Laws, but those laws can not explain: why the man's ability to exert a force to move forward becomes used up For this analysis, we must introduce the new concepts of Work and Energy ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy 11-1 Work and energy Example: If a person pulls an object uphill. After some time, he becomes tired and stops. We can analyze the forces exerted in this problem based on Newton’s Laws, but those laws can not explain: why the man’s ability to exert a force to move forward becomes used up. For this analysis, we must introduce the new concepts of “Work and Energy

Notes: 1)The "physics concept of workis different from the work in daily life of its 2)The" of a system is a measure its capacity to do work ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy Notes: 1) The “physics concept of work” is different from the “work in daily life”; 2) The “energy” of a system is a measure of its capacity to do work

11-2 Work done by a constant force 11-3 Power 1. Definition of work The work W done by a constant force f that moves a body through a displacement s in the directions of the force as the product of the magnitudes of the force and the displacement W=FS (Here S/F)(11-1) ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy 11-2 Work done by a constant force 1.Definition of ‘Work’ The work W done by a constant force that moves a body through a displacement in the directions of the force as the product of the magnitudes of the force and the displacement: (11-1) F s W = Fs (Here ) s//F 11-3 Power

EXample: In Fig 11-5, a block is sliding down a plane The normal force n does zero work; the friction force f does negative work, the gravitational force mg does positive work which g s mgs o= mgh Fig 11-5 or mgs cos =s(mg cos o) ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy The normal force does zero work; the friction force does negative work, the gravitational force does positive work which is or → N → N mgscos = mgh mgscos = s(mg cos) → m g → m g → f s h v Fig 11-5 → f Example: In Fig11-5, a block is sliding down a plane

h 2. Work as a dot product The work done by a force F can be written as W=F s (1)If Fls, the work done by the F is zero (2 )Unlike mass and volume, work is not an intrinsic property of a body. It is related to the external force (3 Unit of work: Newton-meter ( Joule) (4)The value of the work depends on the inertia/ reference frame of the observer ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy 2. Work as a dot product The work done by a force can be written as (11-2) (1) If , the work done by the is zero. (2) Unlike mass and volume, work is not an intrinsic property of a body. It is related to the external force. (3) Unit of work: Newton-meter (Joule) (4) The value of the work depends on the inertial reference frame of the observer. → F W F s → → = → → F ⊥ s → F → m g s h v

3. Definition of power: The rate at which work is done t if a certain force performs work Awon a body in a time At, the average power due to the force is △Ⅳ + The instantaneous power P is dw P (11-8) If the power is constant in time, then p=p ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy If a certain force performs work on a body in a time , the average power due to the force is (11-7) The instantaneous power P is (11-8) If the power is constant in time, then . av W P t = dW P dt = P = Pav 3. Definition of power: The rate at which work is done. W t

If the body moves a displacement d s in a time dt, F 110 Unit of power: joule/second ( Watt) See动画库/力学夹/2-03变力的 功A.exe1 ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy (11-10) Unit of power: joule/second (Watt) dW F d s d s P F F v dt dt dt → → → → → → = = = = If the body moves a displacement in a time dt, → d s See 动画库/力学夹/2-03变力的 功A.exe 1

11-4 Work done by a variable force 11-5 1.One-dimensiona Fig11-12 situation The smooth curve in Fig 11-12 shows an F F2(x) arbitrary force F(x) that acts on a body that moves from x to x X X X △ ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy Work done by a variable force 1.One-dimensional situation The smooth curve in Fig 11-12 shows an arbitrary force F(x) that acts on a body that moves from to . Fig 11-12 i x i x f x f x x x F F1 F2 F (x) x 11-5 11-4

We divide the total displacement into a number N of small intervals of equal width Ax. This interval so small that the F(x)is approximately constant. Then in the interval x, to x,+dx, the work AW=FAx and similar△W,=F2△x The total work is W≈△+△W,+.=E1△x+F,△x+ or W≈>F△x (11-1 n=」 ch 11 Energy I: Work and kinetic energy
Ch.11 Energy I: Work and kinetic energy We divide the total displacement into a number N of small intervals of equal width . This interval so small that the F(x) is approximately constant. Then in the interval to +dx , the work and similar ……The total work is or (11-12) = W F x 1 1 x = W F x 2 21 x 1 x = N n n W F x 1 ... ... W W1 +W2 + = F1 x + F2 x +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 1 Measurement.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 2 Motion in one dimension.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 0 Preface.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 21 Temperature.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 3 Force and Newton’s laws.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 5 Applications of Newton’s Law.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 6 Momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 10 Angular momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 20 The special theory of relativity.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 24 Entropy and the second law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 18 Wave Motion.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 14 Gravitation.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.4 热力学第二定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.3 循环过程 卡诺循环.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.2 理想气体的等温过程和绝热过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.1 理想气体的等容过程和等压过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.2 热力学第一定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.1 准静态过程 功 热量.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.3 麦克斯韦气体分子速率分布定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.2 理想气体的压强公式.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.12 Energy II:Potential energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 23 The first law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 9 Rotational dynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 17 Oscillations.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 22 Molecular properties of gases.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 19 Sound waves.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 8 Rotational kinematics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 7 Systems of particles.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 4 Motion in two and three dimensions.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.13 Energy III:Conservation of energy.ppt
- 复旦大学:《高分子物理》课程电子讲义_第一章 导论、第二章 高分子的大小和形状.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 3 Polymer Solutions、Chapter 4 Multi-component Polymer Systems.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapt. 5 Amorphous State of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 6 Condensed States of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 7 Mechanics Properties of Polymers.pdf
- 《化学物理学报》:半导体光催化研究进展与展望.pdf
- 《固体物理学》课程教学资源(课外阅读材料)Sommerfeld模型的原始文献(德文).pdf
- 《固体物理学》课程教学资源(课外阅读材料)Bloch关于Bloch定理的回忆.pdf
- 《固体物理学》课程教学资源(课外阅读材料)Mott关于固体物理学早期的回忆.pdf
- 《固体物理学》课程教学资源(课外阅读材料)Dirac关于多电子系统的量子力学处理 Quantum Mechanics of Many-Electron Systems.pdf