复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 2 Motion in one dimension

Chapter 2 Motion in one dimension Kinematics Dynamics
Chapter 2 Motion in one dimension Kinematics Dynamics

Section2 -3 Position, velocity and acceleration vectors 1。 Position vector At any particular time t, the Z particle can be located by its X, y and z coordinates, which are the three components of the posItion vector k F=xi+y计+zk y X where i, and k are the Fig 2-11 cartesian unit vectors
At any particular time t, the particle can be located by its x, y and z coordinates, which are the three components of the position vector : where , and are the cartesian unit vectors. Section2-3 Position, velocity and acceleration vectors 1. Position vector k j i r → r = x i+ y j+ z k x y z Fig 2-11 i j k r O

2 Displacement(位移) We defined the displacement y t vector Ar as the change in position vector from t, to t2 t △F=- O x Fig 2-12 Note: 1) Displacement is not the same as the distance traveled by the particle 2)The displacement is determined only by the starting and ending points of the interval
We defined the displacement vector as the change in position vector from t1 to t2 . 2. Displacement (位移) 2 1 r r r = − r Note: 1) Displacement is not the same as the distance traveled by the particle. 2) The displacement is determined only by the starting and ending points of the interval. y z 1 r 1 t 2 t= t t= x Fig 2-12 2 r s O r

扩(=x+y1j+1k =xi+vitek Then the displacement is =(x2-x1)i+(y2-y1)j+(z2-21k Direction: from start point to end point Magnitude: A-=VAx+Ay2+A22
2 2 2 Magnitude : r = x +y +z Direction: from start point to end point if r x i y j z k 1 = 1 + 1 + 1 r x i y j z k 2 = 2 + 2 + 2 2 1 r r r = − Then the displacement is x x i y y j z z k ( ) ( ) ( ) = 2 − 1 + 2 − 1 + 2 − 1

The relationship between△fand△s In general △r≠△S △s Can △F=△s Yes. for two cases 1)1D motion without 1ox changing direction 2)When△t→>0 after take limit: dr=ds
The relationship between and : r s 1 r P1 2 r P2 r x y O z r s s In general, Can ? r = s Yes, for two cases: 1) 1D motion without changing direction 2) When after take limit: t → 0, dr = ds

The difference between|△;and△r(△E (A≡△元) △: magnitude of△F Ar: the change of length B/△ of position vectors △ x2+y2+ Note △F≠△r
The difference between and ( ): r r r r 1 r P1 2 r r P2 x y O r z 2 1 2 1 2 1 − x + y + z 2 2 2 2 2 2 r = x + y +z Note r : magnitude of r : the change of length of position vectors r ( r r ) r

When At->0. after take limit △F→)cF △产|GF △s→>C=F ∧y→d △→>=h≠l
When after take limit: t → 0, dr dr r dr → | r | | dr | → s →ds r →dr r d r → | dr | =

3. velocity and speed a. The average velocity in any interval is defined to be displacement divided by the time interval △F △t (27) when we use the term velocity we mean the instantaneous velocity b. To find the instantaneous velocity, we reduce the size of the time interval At that is M→>0 and then△r→>0. v(O)=1inF(t+△)-F() lim t→)0 △t->0 △tdt 2-9)
3.velocity and speed a.The average velocity in any interval is defined to be displacement divided by the time interval, (2-7) when we use the term velocity, we mean the instantaneous velocity. b. To find the instantaneous velocity, we reduce the size of the time interval , that is t → 0 and then . → 0 → r dt dr t r t r t t r t v t t t = = + − = → → lim lim 0 0 ( ) ( ) ( ) t r va v = t (2-9)

In cartesian coordinates dr= dx i+dy j+ dzk dr dx dv dz +=j+,k dtdt dt The vector v can also be written in terms of its components as: v=vi+vi+vk dy Vx dt vy dt v: dt (2-12)
= = + + k dt dz j dt dy i dt dx dt dr v The vector can also be written in terms of its components as: (2-11) v v v i v j v k x y z = + + dt dx vx = dt dy vy = dt dz vz = (2-12) dr = dx i+ dy j+ dz k In cartesian coordinates:

Discussion The position vector of a moving particle at a moment is r(x, y The magnitude of the velocity of the particle at the moment is: dr (A) dt √(B) dt (C) (D) dt v dt
Discussion The position vector of a moving particle at a moment is . The magnitude of the velocity of the particle at the moment is: r(x, y) t r d d t r d | d | (A) (B) t r d d 2 2 ) d d ) ( d d ( t y t x (C) (D) + √ √
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 0 Preface.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 21 Temperature.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 3 Force and Newton’s laws.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 5 Applications of Newton’s Law.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 6 Momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 10 Angular momentum.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 20 The special theory of relativity.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 24 Entropy and the second law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 18 Wave Motion.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 14 Gravitation.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.4 热力学第二定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.3 循环过程 卡诺循环.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.2 理想气体的等温过程和绝热过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.2.1 理想气体的等容过程和等压过程.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.2 热力学第一定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)7.1.1 准静态过程 功 热量.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.3 麦克斯韦气体分子速率分布定律.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.2 理想气体的压强公式.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)6.1 状态、过程与理想气体.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件)3.3 完全弹性碰撞 完全非弹性碰撞.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 1 Measurement.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.11 Energy I:Work and kinetic energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.12 Energy II:Potential energy.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 23 The first law of thermodynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 9 Rotational dynamics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 17 Oscillations.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 22 Molecular properties of gases.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 19 Sound waves.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 8 Rotational kinematics.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 7 Systems of particles.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Chapter 4 Motion in two and three dimensions.ppt
- 复旦大学:《大学物理》课程教学资源(PPT课件,英文)Ch.13 Energy III:Conservation of energy.ppt
- 复旦大学:《高分子物理》课程电子讲义_第一章 导论、第二章 高分子的大小和形状.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 3 Polymer Solutions、Chapter 4 Multi-component Polymer Systems.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapt. 5 Amorphous State of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 6 Condensed States of Polymers.pdf
- 复旦大学:《高分子物理》课程电子讲义_Chapter 7 Mechanics Properties of Polymers.pdf
- 《化学物理学报》:半导体光催化研究进展与展望.pdf
- 《固体物理学》课程教学资源(课外阅读材料)Sommerfeld模型的原始文献(德文).pdf
- 《固体物理学》课程教学资源(课外阅读材料)Bloch关于Bloch定理的回忆.pdf