《深度自然语言处理》课程教学课件(Natural language processing with deep learning)17 Deep leanring Programing framework

西安交通大学Natural Language ProcessingwithDeepLearningXIANHAOTONGUNIVERSITYDeep leanringPrograming framework交通大学Chen Li2023
Chen Li 2023 Deep leanring Programing framework Natural Language Processing with Deep Learning

IntroductionDeep leanringPrograming frameworkCaffePyTorchmxnetMARYLINGTensorFlowKKerassPaddlePaddleChainerCNTKDL4JtheanoMatConvnetDEEPLEARNING
Introduction Deep leanring Programing framework

IntroductionDeep leanring Programing frameworkIn general, the deep learning framework provides a series of deeplearning components (for general algorithms,there will beimplementation). When a new algorithm needs to be used, it needsto be defined by the user, and then the function interface of the deeplearning framework is called to use the new algorithm defined by theuser.you can useexisting models,you can train the parameters of themodels yourselfyou can add your own layer to the existing models.you can select the classifier and optimization algorithm you need atthetop (youdon'tneedpropramthematscratch!)No framework is perfect, just as there may not be a set of buildingblocks that you need, so different frameworks may not fit in exactlythe sameareas
Introduction Deep leanring Programing framework In general, the deep learning framework provides a series of deep learning components (for general algorithms, there will be implementation). When a new algorithm needs to be used, it needs to be defined by the user, and then the function interface of the deep learning framework is called to use the new algorithm defined by the user. you can use existing models, you can train the parameters of the models yourself you can add your own layer to the existing models. you can select the classifier and optimization algorithm you need at the top ( you don't need propram them at scratch ! ) No framework is perfect, just as there may not be a set of building blocks that you need, so different frameworks may not fit in exactly the same areas

IntroductionNameReleaseOrganization Low-level Language Support LanguageGit starCaffeBVLCC++2013/927000+C++/Python/MatlabTensorflow2015/9GoogleC++/Python/Java等124000+C++/Python2017/1PytorchFacebookC/C++/PythonPython26000+C++Mxnet2015/5DMLCC++/Python/Julia/R等16000+Keras2015/3Google39600+PythonPython2016/8Baidu8300+PaddlepaddleC++/PythonC++/PythonCntk2014/7C++Microsoft15900+C++/Python/C#/.NET/Java2014/2VLFeatC/MatlabMatlab1100+Matconvnet2013/9EclipseC/C++/CudaJava/Scalar等10000+Deeplearning4jChainer2015/44600+Preferred networksPython/CythonPython2014/9Lasagne/theanoC/PythonPython3600+LasagneCcDarknet2013/9JosephRedmon
Introduction Name Release Organization Low-level Language Support Language Git star

IntroductionEach frame has different merits and demerits, choose the best one for you!NameReleaseOrganizationLow-level Language SupportLanguageGitstarCaffe2013/9BVLCC++27000+C++/Python/Matlab2015/9GoogleC++/Python/Java等124000+TensorflowC++/PythonPytorch2017/126000+FacebookC/C++/PythonPython2015/5DMLCC++MxnetC++/Python/Julia/R等16000+Keras2015/3GooglePythonPython39600+2016/8BaiduC++/Python8300+PaddlepaddleC++/PythonCntk2014/7C++MicrosoftC++/Python/C#/.NET/ava15900+2014/2VLFeatMatlab1100+MatconvnetC/Matlab2013/9Java/Scalar等Deeplearning4jEclipseC/C++/Cuda10000+4600+Chainer2015/4PythonPreferrednetworksPython/CythonLasagne/theano2014/9C/Python3600+LasagnePythoncc2013/9DarknetJosephRedmon
Introduction Name Release Organization Low-level Language Support Language Git star Each frame has different merits and demerits, choose the best one for you !

IntroductionEach frame has different merits and demerits, choose the best one for you!NameReleaseOrganization Low-level Language SupportLanguage GitstarCaffe2013/9BVLCC++27000+C++/Python/MatlabTensorflow2015/9GoogleC++/PythonC++/Python/Java等124000+Pytorch2017/126000+FacebookC/C++/PythonPython2015/5DMLCC++MxnetC++/Python/Julia/R等16000+Keras2015/3GooglePython39600+Python2016/8BaiduC++/Python8300+PaddlepaddleC++/PythonCntk2014/7C++MicrosoftC++/Python/C#/.NET/ava15900+2014/2VLFeatMatlab1100+MatconvnetC/Matlab2013/9Java/Scalar等Deeplearning4jEclipseC/C++/Cuda10000+4600+Chainer2015/4Preferred networksPythonPython/CythonLasagne/theano2014/9C/Python3600+LasagnePythoncc2013/9DarknetJosephRedmon
Introduction Name Release Organization Low-level Language Support Language Git star Each frame has different merits and demerits, choose the best one for you !

IntroductionEach frame has different merits and demerits, choose the best one for you!NameReleaseOrganization Low-level Language SupportLanguageGitstarCaffe2013/9BVLCC++C++/Python/Matlab27000+2015/9124000+TensorflowGoogleC++/PythonC++/Python/Java等Pytorch2017/126000+FacebookC/C++/PythonPythonC++Mxnet2015/5DMLC16000+C++/Python/Julia/R等Keras2015/3GooglePythonPython39600+2016/8Baidu8300+PaddlepaddleC++/PythonC++/PythonCntk2014/7C++MicrosoftC++/Python/C#/.NET/ava15900+2014/2VLFeatMatlab1100+MatconvnetC/Matlab2013/9Java/Scalar等Deeplearning4jEclipseC/C++/Cuda10000+4600+Chainer2015/4PythonPreferred networksPython/CythonLasagne/theano2014/9C/Python3600+LasagnePythoncc2013/9DarknetJosephRedmon
Introduction Name Release Organization Low-level Language Support Language Git star Each frame has different merits and demerits, choose the best one for you !

IntroductionEach frame has different merits and demerits, choose the best one for you!NameReleaseOrganization Low-level Language SupportLanguageGitstarCaffe2013/9BVLCC++C++/Python/Matlab27000+2015/9124000+TensorflowGoogleC++/PythonC++/Python/Java等Pytorch2017/126000+FacebookC/C++/PythonPython2015/5C++MxnetDMLCC++/Python/Julia/R等16000+Keras2015/3GooglePython39600+PythonPaddlepaddle2016/8Baidu8300+C++/PythonC++/PythonCntk2014/7C++MicrosoftC++/Python/C#/.NET/Java15900+2014/2VLFeatMatlab1100+MatconvnetC/Matlab2013/9Java/Scalar等Deeplearning4jEclipseC/C++/Cuda10000+4600+Chainer2015/4PythonPreferred networksPython/CythonLasagne/theano2014/9C/Python3600+LasagnePythoncc2013/9DarknetJosephRedmon
Introduction Name Release Organization Low-level Language Support Language Git star Each frame has different merits and demerits, choose the best one for you !

CaffeCaffeis oneoftheoldestframesCaffeMARYLINGIt's very robust, very fast.Caffeis5timeslessthankeras (withtheanobackend)insomeexperiments.The drawback of Caffe is that it's not flexible enough.> If you want to change it a little bit, you need to use C++ andCUDA Programming.Caffe'sdocumentationisverypoor.> You need to spend a lot of time checking the code tounderstand it?Cafeishardtoinstall> Itneedsto solvealot of dependencypackagesCaffeCaffe2.0Now, it is parts of Pytorch
Caffe l Caffe is one of the oldest frames. l It's very robust, very fast. l Caffe is 5 times less than keras (with theano backend) in some experiments. l The drawback of Caffe is that it's not flexible enough. Ø If you want to change it a little bit, you need to use C++ and CUDA Programming. l Caffe's documentation is very poor. Ø You need to spend a lot of time checking the code to understand it? l Cafe is hard to install. Ø It needs to solve a lot of dependency packages Caffe Caffe2.0 Now, it is parts of Pytorch

TheanotheanoTheano is another of theoldest and most stable librariesIn the beginning of deep learning, libraries you should use is either cafeortheano.> It supports automatic function gradient calculation, has PythoninterfaceandintegratesnumpyTheano is a lower level library.> more suitable for numerical optimization rather than deep learningToday, theano still works well> but it's beginning to be forgotten because it doesn't support multipleGPUsandhorizontalexpansion.Difficult debugging method> You have to wait until the function is compiled, which takes morethan an hour sometimes
Theano l Theano is another of the oldest and most stable libraries. l In the beginning of deep learning, libraries you should use is either cafe or theano. Ø It supports automatic function gradient calculation, has Python interface and integrates numpy l Theano is a lower level library. Ø more suitable for numerical optimization rather than deep learning l Today, theano still works well, Ø but it's beginning to be forgotten because it doesn't support multiple GPUs and horizontal expansion. l Difficult debugging method Ø You have to wait until the function is compiled, which takes more than an hour sometimes
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)16 Natural Language Generation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)14 Question Answering.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)15 Machine translation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)10 information extraction.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)11 coreference resolution.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)12 sentiment analysis.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)09 Language Model & Distributed Representation(6/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)08 Language Model & Distributed Representation(5/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)07 Language Model & Distributed Representation(4/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)05 Language Model & Distributed Representation(2/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)06 Language Model & Distributed Representation(3/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)04 Language Model & Distributed Representation(1/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)03 Fundamental Tasks of NLP.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)01 About the course.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)02 What is NLP, why NLP and How NLP.pdf
- 佛山大学(佛山科学技术学院):2022年版计算机科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实践课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版智能科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实验课程教学大纲汇编.pdf
- 《物联网导论》课程教学资源(PPT课件)第16章 SLAM空间智能计算.pptx
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018 版).pdf
- 沈阳师范大学:《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 沈阳师范大学:《大学计算机基础》课程授课教案(讲义,共五章,任课教师:刘冰).pdf
- 《大学计算机基础》课程教学资源(教案讲义,共五章,沈阳师范大学:刘冰).pdf
- 《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 《数据库技术与应用》课程教学资源(授课教案)第1章 数据库基础、第2章 数据库和表(沈阳师范大学:安晓飞).pdf
- 沈阳师范大学:《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 沈阳师范大学:《数据库原理》课程教学大纲 DataBase Principle.pdf
- 沈阳师范大学:《数据库原理》课程授课教案(讲义,共十章,主讲:马佳琳).pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第10章 数据库恢复技术.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第11章 并发控制.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第1章 概论(主讲:马佳琳).pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第2章 关系数据库.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第3章 关系数据库标准语言SQL.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第4章 数据库安全性.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第5章 数据库完整性.pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第6章 关系数据理论(1/4).pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第6章 关系数据理论(2/4).pdf
- 沈阳师范大学:《数据库原理》课程教学课件(讲稿)第6章 关系数据理论(3/4).pdf
