《深度自然语言处理》课程教学课件(Natural language processing with deep learning)06 Language Model & Distributed Representation(3/6)

西安交通大学Natural languageprocessingwith deeplearningXIANHAOTONGUNIVERSITYLanguage Model&Distributed Representation (3)交通大学ChenLicli@xjtu.edu.cn2023
Chen Li cli@xjtu.edu.cn 2023 Language Model & Distributed Representation (3) Natural language processing with deep learning

Outlines1. NNLM2. CBOW3. Skip-gram4. Hierarchical softmax& Negative sampling5. Glove
Outlines 1. NNLM 2. CBOW 3. Skip-gram 4. Hierarchical softmax & Negative sampling 5. Glove

Outlines1.NNLM2. CBOW3. Skip-gram4. Hierarchical softmax& Negative sampling5. Glove
Outlines 1. NNLM 2. CBOW 3. Skip-gram 4. Hierarchical softmax & Negative sampling 5. Glove

Neural NetworkLanguage ModelsReviewthetaskof language modelsx(t)Input: word sequence x(1), x(2)...Output: the probability distribution of the next word P(x(t+1) |x(t),..r(1)NNLM road map (1):HLBL(Mnih,2009)NNLMGloveWord2vec(Turian,(Huang)(Bengio,(Pennington,2010)2012)(Mikolov,2013)C&W2003)2014)(Collobert,2008)1)Task-specificembedding交通大2)X-word2vec3)Understandingandinterpretation
Neural Network Language Models Review the task of language models • Input: word sequence � (1) , � (2) ,., � (�) • Output: the probability distribution of the next word �(� (�+1)|� (�) ,., � (1)) l NNLM road map (1): NNLM (Bengio, 2003) HLBL (Mnih, 2009) C&W (Collobert, 2008) (Turian, 2010) (Huang, 2012) Word2vec (Mikolov, 2013) Glove (Pennington, 2014) 1) Task-specific embedding 2) X-word2vec 3) Understanding and interpretation

Neural Network Language ModelsReviewthetaskof language modelsInput: word sequence x(1), x(2)... x(t)Output: the probability distribution of the next word P(x(t+1)|x(t),...x(1Neural network model based on window?girlheropened
Neural Network Language Models Review the task of language models • Input: word sequence � (1) , � (2) ,., � (�) • Output: the probability distribution of the next word �(� (�+1)|� (�) ,., � (1)) Neural network model based on window? girl opened her

Neural Network Language Models交通大学thegirlheropenedabandonFixedWindow
Before her mum arrives the girl opened her _ abandon Fixed window Neural Network Language Models

Neural Network Language Models交通大学Word vector (one-hot,distributedthegirlheropenedrepresentation......)x(2)x(3)x(4)x(1)x(1), x(2),x(3), x(4)
the girl opened her _ � (1) , � (2) ,� (3) , � (4) � (1) � (2) � (3) � (4) Word vector(one-hot, distributed representation.) Neural Network Language Models

Neural Network Language ModelsConcatenate word vectorse = [e(1); e(2); e(3); e(4)]零电电餐2囍6606Word vector (one-hot,distributedthegirlheropenedrepresentation......)x(2)x(3)x(4)x(1)x(1), x(2),x(3), x(4)
� = [� (1) ; � (2) ; � (3) ; � (4)] Concatenate word vectors Neural Network Language Models the girl opened her _ � (1) , � (2) ,� (3) , � (4) � (1) � (2) � (3) � (4) Word vector(one-hot, distributed representation.)

Neural Network Language ModelsHiddenLayerh = f(We+b)WConcatenate word vectorse = [e(1); e(2); e(3); e(4)]Q相电#06Word vector (one-hot,distributedthegirlheropenedrepresentation......x(2)x(3)x(4)x(1)x(1), x(2),x(3), x(4)
� � = [� (1) ; � (2) ; � (3) ; � (4)] Concatenate word vectors ℎ = �(�� + �1) Hidden Layer Neural Network Language Models the girl opened her _ � (1) , � (2) ,� (3) , � (4) � (1) � (2) � (3) � (4) Word vector(one-hot, distributed representation.)

Neural Network Language ModelsbookslaptopsOutput Layer = softmax(Uh + b2) E RIVIZOOUHiddenLayerh = f(We+b)WConcatenate word vectorse = [e(1); e(2); e(3); e(4)]Q0QQ:#606Word vector (one-hot, distributedthegirlheropenedrepresentation......x(1)x(2)x(3)x(4)x(1), x(2),x(3), x(4)
� � books laptops a zoo � = [� (1) ; � (2) ; � (3) ; � (4)] Concatenate word vectors ℎ = �(�� + �1) Hidden Layer � = 𝑠��𝑓�(�ℎ + �2) ∈ ℝ|�| Output Layer Neural Network Language Models the girl opened her _ � (1) , � (2) ,� (3) , � (4) � (1) � (2) � (3) � (4) Word vector(one-hot, distributed representation.)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)04 Language Model & Distributed Representation(1/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)03 Fundamental Tasks of NLP.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)01 About the course.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)02 What is NLP, why NLP and How NLP.pdf
- 佛山大学(佛山科学技术学院):2022年版计算机科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实践课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版智能科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实验课程教学大纲汇编.pdf
- 《物联网导论》课程教学资源(PPT课件)第16章 SLAM空间智能计算.pptx
- 《物联网导论》课程教学资源(PPT课件)第15章 低功耗广域网.pptx
- 《物联网导论》课程教学资源(PPT课件)第14章 毫米波感知.pptx
- 《物联网导论》课程教学资源(PPT课件)第13章 无源感知系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第12章 智慧工业.pptx
- 《物联网导论》课程教学资源(PPT课件)第11章 智慧供应链.pptx
- 《物联网导论》课程教学资源(PPT课件)第10章 智能建筑.pptx
- 《物联网导论》课程教学资源(PPT课件)第6章 新兴通信技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第5章 移动互联网.pptx
- 《物联网导论》课程教学资源(PPT课件)第4章 感知技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第3章 定位系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第2章 识别技术.pptx
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)05 Language Model & Distributed Representation(2/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)07 Language Model & Distributed Representation(4/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)08 Language Model & Distributed Representation(5/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)09 Language Model & Distributed Representation(6/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)12 sentiment analysis.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)11 coreference resolution.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)10 information extraction.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)15 Machine translation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)14 Question Answering.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)16 Natural Language Generation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)17 Deep leanring Programing framework.pdf
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018 版).pdf
- 沈阳师范大学:《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 沈阳师范大学:《大学计算机基础》课程授课教案(讲义,共五章,任课教师:刘冰).pdf
- 《大学计算机基础》课程教学资源(教案讲义,共五章,沈阳师范大学:刘冰).pdf
- 《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 《数据库技术与应用》课程教学资源(授课教案)第1章 数据库基础、第2章 数据库和表(沈阳师范大学:安晓飞).pdf
- 沈阳师范大学:《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 沈阳师范大学:《数据库原理》课程教学大纲 DataBase Principle.pdf
