《深度自然语言处理》课程教学课件(Natural language processing with deep learning)05 Language Model & Distributed Representation(2/6)

西安交通大学Natural languageprocessingwith deeplearningXIANHAOTONGUNIVERSITYLanguage Model&Distributed Representation (2)交通大学ChenLicli@xjtu.edu.cn2023
Chen Li cli@xjtu.edu.cn 2023 Language Model & Distributed Representation (2) Natural language processing with deep learning

Outlines1. Word2Vector (W2V)2. Training LM3. Evaluating LM
Outlines 1. Word2Vector (W2V) 2. Training LM 3. Evaluating LM

Outlines1.Word2Vector(W2V2. Training LM3. Evaluating LM
Outlines 1. Word2Vector (W2V) 2. Training LM 3. Evaluating LM

WordEmbeddingConstruct a dense vector to represent each word, making this vector similartothevectorofwordsinsimilarcontexts0.2860.792-0.177banking:-0.1070.109-0.5420.3490.271
Word Embedding • Construct a dense vector to represent each word, making this vector similar to the vector of words in similar contexts. 0.286 0.792 −0.177 −0.107 0.109 −0.542 0.349 0.271 banking =

WordEmbeddingConstruct a dense vectorto representeach word,makingthis vector similartothevectorofwordsinsimilarcontexts0.2860.792-0.177banking:-0.1070.109-0.5420.3490.271Word vectorsaresometimes calledword embeddings orword representationsThese are distributed representations
Word Embedding • Construct a dense vector to represent each word, making this vector similar to the vector of words in similar contexts. 0.286 0.792 −0.177 −0.107 0.109 −0.542 0.349 0.271 banking = Word vectors are sometimes called word embeddings or word representations. These are distributed representations

Word vectors representword meaningvisualizationneedhelpcomeqo0.286take0.792keepqive-0.177getmakemeetcontinue-0.107seeexpect=0.109wantbecomeexpect-0.542thinkremainsay0.349areis0.271beweraas0.487beingbeenhadhashave
Word vectors represent word meaning- visualization 0.286 0.792 −0.177 −0.107 0.109 −0.542 0.349 0.271 0.487 expect =

Word vectorsrepresentword meaning-visualizationfoodeatlaptopDistributional vectorsrepresentedby a D-dimensionalvector where D<<V,where V is size of VocabularyThegreatest contribution of distributed representation is tomakerelatedorsimilarwordscloserindistanceand solve the problem of curseof dimensiontoa certain extent
Word vectors represent word meaning- visualization The greatest contribution of distributed representation is to make related or similar words closer in distance and solve the problem of curse of dimension to a certain extent

Word vectorsrepresentword meaning-visualization著名的类比King-Man+Woman=QueenMale-FemaleThegreatest contributionof distributed representationisto makerelatedorsimilarwordscloserindistanceandsolvetheproblemofcurseofdimensiontoacertainextent
Word vectors represent word meaning- visualization The greatest contribution of distributed representation is to make related or similar words closer in distance and solve the problem of curse of dimension to a certain extent

Distributed and Distributional RepresentationNotes:Distributed representation refers to the form of textrepresentation,whichislowdimensionaland densecontinuousvectorDistributional Representationis akind of methodto obtaintextrepresentation,whichuses co-occurrence matrixto obtainthesemanticrepresentationofwords.Eachlineof co-occurrencematrixcanbe regarded as the vector representation ofcorrespondingwords逸大
Distributed and Distributional Representation Distributed representation refers to the form of text representation, which is low dimensional and dense continuous vector Distributional Representation is a kind of method to obtain text representation, which uses co-occurrence matrix to obtain the semantic representation of words. Each line of co-occurrence matrix can be regarded as the vector representation of corresponding words. Notes:

Word2vecWord2vecTomasMikolov.etal.2013交通大学1.MikolovT,ChenK,Corrado G,etal.Efficient estimation ofword representations in vectorspace[J].arXivpreprintarXiv:1301.3781,2013
Word2vec • Tomáš Mikolov, et al. 2013 Word2vec 1. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)06 Language Model & Distributed Representation(3/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)04 Language Model & Distributed Representation(1/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)03 Fundamental Tasks of NLP.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)01 About the course.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)02 What is NLP, why NLP and How NLP.pdf
- 佛山大学(佛山科学技术学院):2022年版计算机科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实践课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版智能科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实验课程教学大纲汇编.pdf
- 《物联网导论》课程教学资源(PPT课件)第16章 SLAM空间智能计算.pptx
- 《物联网导论》课程教学资源(PPT课件)第15章 低功耗广域网.pptx
- 《物联网导论》课程教学资源(PPT课件)第14章 毫米波感知.pptx
- 《物联网导论》课程教学资源(PPT课件)第13章 无源感知系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第12章 智慧工业.pptx
- 《物联网导论》课程教学资源(PPT课件)第11章 智慧供应链.pptx
- 《物联网导论》课程教学资源(PPT课件)第10章 智能建筑.pptx
- 《物联网导论》课程教学资源(PPT课件)第6章 新兴通信技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第5章 移动互联网.pptx
- 《物联网导论》课程教学资源(PPT课件)第4章 感知技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第3章 定位系统.pptx
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)07 Language Model & Distributed Representation(4/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)08 Language Model & Distributed Representation(5/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)09 Language Model & Distributed Representation(6/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)12 sentiment analysis.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)11 coreference resolution.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)10 information extraction.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)15 Machine translation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)14 Question Answering.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)16 Natural Language Generation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)17 Deep leanring Programing framework.pdf
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018 版).pdf
- 沈阳师范大学:《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 沈阳师范大学:《大学计算机基础》课程授课教案(讲义,共五章,任课教师:刘冰).pdf
- 《大学计算机基础》课程教学资源(教案讲义,共五章,沈阳师范大学:刘冰).pdf
- 《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 《数据库技术与应用》课程教学资源(授课教案)第1章 数据库基础、第2章 数据库和表(沈阳师范大学:安晓飞).pdf
- 沈阳师范大学:《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 沈阳师范大学:《数据库原理》课程教学大纲 DataBase Principle.pdf
- 沈阳师范大学:《数据库原理》课程授课教案(讲义,共十章,主讲:马佳琳).pdf
