《深度自然语言处理》课程教学课件(Natural language processing with deep learning)01 About the course

西安交通大学Natural Language Processingwith DeepLearningXIANHAOTONGUNIVERSITYAbout the course交通大学ChenLicli@xjtu.edu.cn2023
Chen Li cli@xjtu.edu.cn 2023 About the course Natural Language Processing with Deep Learning

AboutthelecturerChenLi(李辰)cli@xjtu.edu.cnAprofessorinthe School ofComputer Scienceand TechnologyAresearcherinArtificial Intelligence,especiallyAlinBiomedicine交道大学
About the lecturer • cli@xjtu.edu.cn • A professor in the School of Computer Science and Technology • A researcher in Artificial Intelligence, especially AI in Biomedicine Chen Li (李辰)

ResourcesSlidesandOther Materialshttp://ispace.xjtu.edu.cn/course/7223ReferencesSPEECHANDPATTERN RECOGNITIONDEEP LEARNINGLANGUAGEPROCESSINGAND MACHINE LEARNINGndAaronCCHRISTOPHERM.BISHOPFOUNDATIONSOFSTATISTICALNATURALLANGUAGEPROCESSINGCHRISTOPAERDMANNINGANDHINRICH SCHUTZEDANIELJURAFSKY&JAMESHMARTINThe related papers will be at the end of each chapter
Resources • http://ispace.xjtu.edu.cn/course/7223 Slides and Other Materials References • The related papers will be at the end of each chapter

Logic oftheCourseWhat is NLP, why NLP and HowNLP?General ButEssential(1th week)FundamentalTasksofNLPDistributedHypothesis andW2V(2hweek)Language ModelComputational Linguistics【(2-3mweek)Information ExtractionCoreference Resolution (4th week)NLUSentimentAnalysis(4th week)Sumarization(5in week)AdvancedTasksQuestion&AnsweringI (5thweek)NLGMachineTranslation(6th week)AIGC(6th week)DeepLearningProgamFramework(7th week)Applications(7th week)Application-biomedical text mining(8tn week)Projectdemonstration
Logic of the Course u What is NLP, why NLP and How NLP? u Fundamental Tasks of NLP u Distributed Hypothesis and W2V u Language Model u Information Extraction u Coreference Resolution u Sentiment Analysis u Sumarization u Question & Answering u Machine Translation u AIGC u Deep Learning Progam Framework u Application-biomedical text mining u Project demonstration Advanced Tasks Applications General But Essential Computational Linguistics (1th week) (7th week) (7th week) (8th week) (2th week) (2-3th week) (6th week) (4th week) (4th week) (5th week) (5th week) (6th week) NLU NLG

Logic of theCourseWhat is NLP,why NLP andHowNLP?General But Essential(1thweek)Statistical characteristics of NLpFundamental Tasks ofNLPDistributedHypothesisand W2V(2hweek)Computational Linguistics-3mweek)Language ModInformation ExtractioCoreference ReThat's a lot!SentimentAnalAdvanced TasksSumarization5hweeLGQuestion&Answering(6hweek)(6m,week)Machine TranslationDeepLearningProgamFramework(7hweek)Applications(7h week)Application-biomedical text mining(8tweek)Project demonstration
Logic of the Course u What is NLP, why NLP and How NLP? u Statistical characteristics of NLP u Fundamental Tasks of NLP u Distributed Hypothesis and W2V u Language Model u Information Extraction u Coreference Resolution u Sentiment Analysis u Sumarization u Question & Answering u Machine Translation u Deep Learning Progam Framework u Application-biomedical text mining u Project demonstration Advanced Tasks Applications General But Essential Computational Linguistics (1th week) (7th week) (7th week) (8th week) (2th week) (2-3th week) (6th week) (4th week) (4th week) (5th week) (5th week) (6th week) NLU NLG That’s a lot!

Assessments2assignmentsDetails will be available at the classes;Eachgroupcanhave1-3people;Grades of all assignments will be counted in.交通大学
Assessments • Details will be available at the classes; • Each group can have 1-3 people; • Grades of all assignments will be counted in. 2 assignments

Assessments2assignmentsDetails will be available at the classes;Each group can have 1-3 people;Grades of all assignments will be counted in.1final projectFinishing independentlyPresentations will beatthelast session.交通大学
Assessments • Details will be available at the classes; • Each group can have 1-3 people; • Grades of all assignments will be counted in. 2 assignments • Finishing independently; • Presentations will be at the last session. 1 final project

Assessments2assignmentsDetails will be available at the classes; Each group can have 1-3 people;Grades of all assignments will be counted in.1final projectFinishing independently,Presentations will be atthe last session.Grading policy交通大学2 assignments: 25% x 2 = 50%;Final project: 40%;Attendance:10%Late days will be counted against the grading.i.e. A perfect but late submission won't get a full score
Assessments • Details will be available at the classes; • Each group can have 1-3 people; • Grades of all assignments will be counted in. 2 assignments • Finishing independently; • Presentations will be at the last session. 1 final project • 2 assignments: 25% x 2 = 50%; • Final project: 40%; • Attendance: 10%. • Late days will be counted against the grading. i.e. A perfect but late submission won’t get a full score. Grading policy

西安交通大学XIANHAOTONGUNIVERSITYQ&A交通大学
Q & A
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)02 What is NLP, why NLP and How NLP.pdf
- 佛山大学(佛山科学技术学院):2022年版计算机科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实践课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版智能科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实验课程教学大纲汇编.pdf
- 《物联网导论》课程教学资源(PPT课件)第16章 SLAM空间智能计算.pptx
- 《物联网导论》课程教学资源(PPT课件)第15章 低功耗广域网.pptx
- 《物联网导论》课程教学资源(PPT课件)第14章 毫米波感知.pptx
- 《物联网导论》课程教学资源(PPT课件)第13章 无源感知系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第12章 智慧工业.pptx
- 《物联网导论》课程教学资源(PPT课件)第11章 智慧供应链.pptx
- 《物联网导论》课程教学资源(PPT课件)第10章 智能建筑.pptx
- 《物联网导论》课程教学资源(PPT课件)第6章 新兴通信技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第5章 移动互联网.pptx
- 《物联网导论》课程教学资源(PPT课件)第4章 感知技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第3章 定位系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第2章 识别技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第1章 物联网概述 Introduction to Internet of Things.pptx
- 《物联网导论》课程教学资源(PPT课件)第9章 智能交通.pptx
- 《物联网导论》课程教学资源(PPT课件)第8章 物联网与隐私.pptx
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)03 Fundamental Tasks of NLP.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)04 Language Model & Distributed Representation(1/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)06 Language Model & Distributed Representation(3/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)05 Language Model & Distributed Representation(2/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)07 Language Model & Distributed Representation(4/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)08 Language Model & Distributed Representation(5/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)09 Language Model & Distributed Representation(6/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)12 sentiment analysis.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)11 coreference resolution.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)10 information extraction.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)15 Machine translation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)14 Question Answering.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)16 Natural Language Generation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)17 Deep leanring Programing framework.pdf
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018 版).pdf
- 沈阳师范大学:《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 沈阳师范大学:《大学计算机基础》课程授课教案(讲义,共五章,任课教师:刘冰).pdf
- 《大学计算机基础》课程教学资源(教案讲义,共五章,沈阳师范大学:刘冰).pdf
- 《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
