《深度自然语言处理》课程教学课件(Natural language processing with deep learning)04 Language Model & Distributed Representation(1/6)

西安交通大学Natural languageprocessingwith deeplearningXIANHAOTONGUNIVERSITYLanguage Model&Distributed Representation (1)交通大学ChenLicli@xjtu.edu.cn2023
Chen Li cli@xjtu.edu.cn 2023 Language Model & Distributed Representation (1) Natural language processing with deep learning

Outlines1. Traditional Language Model (LM)2.Distributed Representation交道大学
Outlines 1. Traditional Language Model (LM) 2. Distributed Representation

Outlines1.Traditional Language Model (LM)2.Distributed Representation交道大学
Outlines 1. Traditional Language Model (LM) 2. Distributed Representation

OverviewAnewNLPtaskLanguage modelingRelated conceptsMarkov chainn-gram modelMaximumLikelihoodEstimation(MLELaplace smoothing, additive smoothingGood Turing
• Language modeling A new NLP task Overview • Markov chain • n-gram model • Maximum Likelihood Estimation (MLE) • Laplace smoothing, additive smoothing • Good Turing Related concepts

LanguageModelDefinition: compute probability distribution over the words in a sentence交道大学
• Definition: compute probability distribution over the words in a sentence Language Model

LanguageModelDefinition: compute probability distribution over the words in a sentenceApplication: predicting the next word in a sequence given the sequence ofwordsalreadypresentbooklaptopthe girl opened herdoormind交通大学
• Definition: compute probability distribution over the words in a sentence • Application: predicting the next word in a sequence given the sequence of words already present Language Model the girl opened her book laptop door mind

LanguageModelDefinition: compute probability distribution overthe words in a sentenceApplication: predicting the next word in a sequence given the sequence ofwords already presentbooklaptopthe girl opened herdoormindFormal Definition:Given a sequence of words x(1), x(2),., x(t), estimate the probabilitydistribution of the next word x(t+1)P(x(t+1)|x(t), .. (1)x(t+1) could be any word in the vocabulary V = (W1, .., Wivi} Language Model is a system like this
Language Model the girl opened her book laptop door • Formal Definition: Given a sequence of words � (1) , � (2) ,., � (�) , estimate the probability distribution of the next word � (t+1) 。 � � (�+1)|� (�) , ., � (1) � (t+1) could be any word in the vocabulary V = {�1, ., �|�|} 。 • Language Model is a system like this mind • Definition: compute probability distribution over the words in a sentence • Application: predicting the next word in a sequence given the sequence of words already present

LanguageModelLanguage Model could also be regarded as a system assigning a probabilitytoatext.交道大学
• Language Model could also be regarded as a system assigning a probability to a text. Language Model

LanguageModelLanguage Model could also be regarded as a system assigning a probabilityto a text.For example, the probability of a text x(1), x(2) ,., x(T) (Language Model)couldbedenotedasP(x(1), . (T) = P(x(1) × P(x(2)|x(1) × . × P(x(T)|x(T-1),.. (1)= I/= P(x() |x(t-1), ., (1)ThisiswhatLanguageModelcomputes
• Language Model could also be regarded as a system assigning a probability to a text. • For example, the probability of a text � (1) , � (2) ,., � (�) (Language Model) could be denoted as P � (1) , ., � (�) = � � (1) × � � (2) � (1) × ∙∙∙ × � � (�) � (�−1) , ., � (1) = �=1 � � � (�) � (�−1) , ., � (1) Language Model This is what Language Model computes

LanguageModelHave youeverused Language Model?交通大学
• Have you ever used Language Model? Language Model
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)03 Fundamental Tasks of NLP.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)01 About the course.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)02 What is NLP, why NLP and How NLP.pdf
- 佛山大学(佛山科学技术学院):2022年版计算机科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实践课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版智能科学与技术专业理论课程教学大纲汇编.pdf
- 佛山大学(佛山科学技术学院):2022年版物联网实验课程教学大纲汇编.pdf
- 《物联网导论》课程教学资源(PPT课件)第16章 SLAM空间智能计算.pptx
- 《物联网导论》课程教学资源(PPT课件)第15章 低功耗广域网.pptx
- 《物联网导论》课程教学资源(PPT课件)第14章 毫米波感知.pptx
- 《物联网导论》课程教学资源(PPT课件)第13章 无源感知系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第12章 智慧工业.pptx
- 《物联网导论》课程教学资源(PPT课件)第11章 智慧供应链.pptx
- 《物联网导论》课程教学资源(PPT课件)第10章 智能建筑.pptx
- 《物联网导论》课程教学资源(PPT课件)第6章 新兴通信技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第5章 移动互联网.pptx
- 《物联网导论》课程教学资源(PPT课件)第4章 感知技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第3章 定位系统.pptx
- 《物联网导论》课程教学资源(PPT课件)第2章 识别技术.pptx
- 《物联网导论》课程教学资源(PPT课件)第1章 物联网概述 Introduction to Internet of Things.pptx
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)06 Language Model & Distributed Representation(3/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)05 Language Model & Distributed Representation(2/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)07 Language Model & Distributed Representation(4/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)08 Language Model & Distributed Representation(5/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)09 Language Model & Distributed Representation(6/6).pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)12 sentiment analysis.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)11 coreference resolution.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)10 information extraction.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)15 Machine translation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)14 Question Answering.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)16 Natural Language Generation.pdf
- 《深度自然语言处理》课程教学课件(Natural language processing with deep learning)17 Deep leanring Programing framework.pdf
- 全国信息安全标准化技术委员会:大数据安全标准化白皮书(2018 版).pdf
- 沈阳师范大学:《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 沈阳师范大学:《大学计算机基础》课程授课教案(讲义,共五章,任课教师:刘冰).pdf
- 《大学计算机基础》课程教学资源(教案讲义,共五章,沈阳师范大学:刘冰).pdf
- 《大学计算机基础》课程教学大纲 Fundamentals of University Computer A.pdf
- 《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
- 《数据库技术与应用》课程教学资源(授课教案)第1章 数据库基础、第2章 数据库和表(沈阳师范大学:安晓飞).pdf
- 沈阳师范大学:《大学计算机基础》课程教学资源(PPT课件,完整讲稿,共五章).pptx
