《理论力学 Theoretical Mechanics——动力学》(双语版)第十四章 动能定理 Theorem of the change in the kinetic energy

Theoretical Mechanics Chapter 14: Theorem of the change in the kinetic energy
1 Theoretical Mechanics

理论力学 第十
2

Chapter 14: Theorem of the change in the kinetic energy 心§141 Work done by a force D8 14-2 Kinetic energy D8 14-3 Theorem of kinetic energy 心§14-4 Power, power equation 8 14-5 Conservative forces field, potential energy, the law of conservation of mechanical energy 8 14-6 General theorems of dynamics and its applications
3 § 14-1 Work done by a force § 14-2 Kinetic energy § 14-3 Theorem of kinetic energy § 14-4 Power, power equation § 14-5 Conservative forces field, potential energy, the law of conservation of mechanical energy § 14-6 General theorems of dynamics and its applications Chapter 14:Theorem of the change in the kinetic energy

第十四章动能定理 §141力的功 §14-2动能 §14-3动能定理 §144功率·功率方程 §14-5势力场·势能·机械能守恒定理 §146动力学普遍定理及综合应用
4 §14–1 力的功 §14–2 动能 §14–3 动能定理 §14–4 功率 · 功率方程 §14–5 势力场 · 势能 · 机械能守恒定理 §14–6 动力学普遍定理及综合应用 第十四章 动能定理

D In order to obtain the theorem of the change in the kinetic energy, we make use of the energy method to investigate dynamical problems. In different to the cases of the theorems of the changes in the linear and the angular moment we make use of the vector method. The method not only has important applications in the research of the mechanicalmotion, but it is also the bridge connecting mechanical motion with other forms of motion .The theorem of the change in the kinetic energy establishes the dependence between the physical quantities describing motion---kinetic energy and describing the acting force work. It is a law describing changes between different forms of energy. 8 14-1 Work done by a force Work is a measure of the accumulated effect of the action of a force on a body during a given displacement 1. Work done by a constant force W=FS cos a M2 The work done by a force is a scalar quanti Fora a, the work is negative. The unit of work in the SI system is the joule(). 1J=INIm
5 In order to obtain the theorem of the change in the kinetic energy,we make use of the energy method to investigate dynamical problems. In different to the cases of the theorems of the changes in the linear and the angular moment we make use of the vector method. The method not only has important applications in the research of the mechanical motion, but it is also the bridge connecting mechanical motion with other forms of motion.The theorem of the change in the kinetic energy establishes the dependence between the physical quantities describing motion---kinetic energy and describing the acting force--- work. It is a law describing changes between different forms of energy. Work is a measure of the accumulated effect of the action of a force on a body during a given displacement. 1. Work done by a constant force F S W FS = = cos The work done by a force is a scalar quantity. For , the work is positive, for , the work is zero, for , the work is negative. The unit of work in the SI system is the joule (J). 2 2 = 2 1J=1N1m § 14-1 Work done by a force

学 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量一动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 §14-1力的功 力的功是力沿路程累积效应的度量。 常力的功 W=FS a Mi M M2 =F S 力的功是代数量。a时负功。 单位:焦耳(J);1J=1Nm
6 与动量定理和动量矩定理用矢量法研究不同,动能定理用 能量法研究动力学问题。能量法不仅在机械运动的研究中有重 要的应用,而且是沟通机械运动和其它形式运动的桥梁。动能 定理建立了与运动有关的物理量—动能和作用力的物理量—功 之间的联系,这是一种能量传递的规律。 § 14-1 力的功 力的功是力沿路程累积效应的度量。 F S W FS = = cos 力的功是代数量。 时,正功; 时,功为零; 时,负功。 单位:焦耳(J); 2 2 = 2 1J=1N1m 一.常力的功

Dynamics 2. Work done by a variable force: 2 Elementary work ]w=Fcosads =Fd=F·cr Xdx+ydy+zd Myar (F=Xi +yj+Zk, dr=dxi +dv+dck Fdr= Xdx+Yay+ld)x The total work done by a force F during a finite curvilinear displacement M, M2is W=∫ Fcosads=∫Fds M (expression in the natural form) =∫Fb (vector expression) M =「Xax+1hy+z (expression in terms of rectangula lar coordinates) 7
7 2. Work done by a variable force: W =Fcosds F ds = = F dr = Xdx +Ydy + Zdz (F = Xi +Yj + Zk ,dr = dxi + dyj + dzk F dr = Xdx+Ydy + Zdz) Elementary work The total work done by a force during a finite curvilinear displacement is . F M1 M2 = = 2 1 2 1 cos M M M M W F ds F ds (expression in the natural form) = 2 1 M M F dr (vector expression) = + + 2 1 M M Xdx Ydy Zdz (expression in terms of rectangular coordinates)

学 二,变力的功 元功:W= Cosas -fds F·c ar Xdx+dv+zd (F=Xi+yj+Zk, dr=dxi+dv +dck F dr= Xdx+Yay+zdz 力F在曲线路程MM,中作功为 M W=∫ Fcosads=∫Fs(自然形式表达式) MI M F dr (矢量式) =「Xx+hy+Zh(直角坐标表达式) 8 M
8 二.变力的功 F ds = = F dr = Xdx +Ydy + Zdz (F = Xi +Yj + Zk ,dr = dxi + dyj + dzk F dr = Xdx+Ydy + Zdz) 力 F 在曲线路程 M1 M2 中作功为 = = 2 1 2 1 cos M M M M W F ds F ds (自然形式表达式) = 2 1 M M F dr (矢量式) = + + 2 1 M M Xdx Ydy Zdz (直角坐标表达式) 元功: W =Fcosds

3. Work done by a resol Dynamic Tant force If a particle is subjected to the action of n forces F..F, the resultant force isR=2F. The work done by the resultant force Ris M W=∫Rd=(F+F2+…+F)b 「Fd+「F2+…+「F=W+W2+…+Wn M1 Mi M1 le W=∑W he work done by the resultant force during a finite displacement is the arithmetical sum of the work done by all the component forces acting on the particle
9 3. Work done by a resultant force: If a particle is subjected to the action of n forces , the resultant force is . The work done by the resultant force is i.e, The work done by the resultant force during a finite displacement is the arithmetical sum of the work done by all the component forces acting on the particle. F F Fn , , , 1 2 R W R dr F F F dr n M M M M = = + ++ ( ) 2 1 2 1 1 2 F dr F dr F dr M M n M M M M = + ++ 2 1 2 1 2 1 1 2 W W +Wn = + + 1 2 W =Wi R = Fi

学 合力的功 质点M受n个力F,2…F作用合力为R=∑F则合力R 的功 M W=」Rd=(F1+F2+…+Fn)d M1 M M =「Fc+「F+…+「F1=W+W2+…+Wn 即 W=∑W 在任一路程上,合力的功等于各分力功的代数和 10
10 三.合力的功 质点M 受n个力 作用合力为 则合力 的功 F F Fn , , , 1 2 R = Fi R W R dr F F F dr n M M M M = = + ++ ( ) 2 1 2 1 1 2 F dr F dr F dr M M n M M M M = + ++ 2 1 2 1 2 1 1 2 W W +Wn = + + 1 2 即 在任一路程上,合力的功等于各分力功的代数和。 W =Wi
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十三章 动量矩定理 Moment of Momentum Theorem.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十二章 动量定理 theorem of momentum.ppt
- 理论力学:《动力学》(双语版) 第十一章 质点运动微分方程.ppt
- 《工程力学》课程讲义:第四章 考虑摩擦时的平衡问题.pdf
- 《工程力学》课程讲义:第十章 压杆稳定.pdf
- 《工程力学》课程讲义:第六章 截面图形的几何性质.pdf
- 《工程力学》课程讲义:第八章 应力状态分析与强度理论.pdf
- 《工程力学》课程讲义:第五章 杆件内力分析.pdf
- 《工程力学》课程讲义:第二章 力系的简化.pdf
- 《工程力学》课程讲义:第九章 变形、位移分析与刚度计算.pdf
- 《工程力学》课程讲义:第三章 力系的平衡.pdf
- 《工程力学》课程讲义:第七章 应力计算与强度条件.pdf
- 《工程力学》课程讲义:第一章 静力分析基础.pdf
- 湘潭大学:《结构力学》第三章 静定结构的受力分析.ppt
- 湘潭大学:《结构力学》第二章 结构的几何构造分析.ppt
- 湘潭大学:《结构力学》第一章 绪论.ppt
- 广西大学:《结构力学》课程考试二.doc
- 广西大学:《结构力学》课程考试一.doc
- 《水力学 HYDRAULICS》课程教学资源(电子教案)第一章 水跃.pdf
- 《水力学 HYDRAULICS》课程教学资源(PPT课件讲稿)第七章 水跃.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十五章 达朗伯原理 D'Alembert's principle.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十六章 虚位移原理 Theorem of virtual displacements.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十七章 拉格朗日方程 Lagrange’s equations.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十八章 机械振动基础 Mechanical Vibrations.ppt
- 《理论力学 Theoretical Mechanics——动力学》(双语版)第十九章 碰撞 Impact.ppt
- 中国科学技术大学:《力学》绪论.pps
- 中国科学技术大学:《力学》第一章 质点运动学.pps
- 中国科学技术大学:《力学》第二章 质点动力学.pps
- 中国科学技术大学:《力学》第三章 动量.pps
- 中国科学技术大学:《力学》第四章 械能守恒.pps
- 中国科学技术大学:《力学》第五章 角动量定理.pps
- 中国科学技术大学:《力学》第六章 刚体力学.pps
- 中国科学技术大学:《力学》第七章 振动和波.pps
- 中国科学技术大学:《力学》第八章 相对论.pps
- 中国科学技术大学:《力学》第九章 流力学.pps
- 《高等流体力学》例题第三章.ppt
- 《高等流体力学》第四章 二维势流(4.6-4.10).ppt
- 《高等流体力学》第四章 二维势流(4.11-4.14).ppt
- 《高等流体力学》第四章 二维势流(4.15-4.18).ppt
- 《高等流体力学》第十一章例题.ppt