湖南大学:《高等数学》课程PPT教学课件(讲稿)第四章 一元函数的导数和微分 §4-5 微分中值定理

NAN DA XUE JING PIN KE CHENG 54-5微分中值定理 罗尔中值定理 引理(费马):设y=(x)在开区间(an,b)内有定义 在x∈(a,b)处取得最大值(最小值) 且f(x)在x处可导,则f(x)=0 证:因f(x)在x处可导 故1im(xb+Ax)-f(x) △x f(x),存在 OD 高等數粤
一、罗尔中值定理 引理(费马):设y =f (x)在开区间(a, b)内有定义. 在x0(a, b)处取得最大值(最小值), 且 f (x)在x0处可导, 则 f '(x0 ) = 0. 证: 因f (x)在x0处可导. ( ), . ( ) ( ) lim 0 0 0 0 故 f x 存在 x f x x f x x = + − → §4-5 微分中值定理

NAN DA XUE JING PIN KE CHENG 从而imf(x+△x)-f(x=minf(x+△x)-f(x) △ Ax→>0 设f(x0)为f(x)在开区间(a,b)内的最大值 即,x∈(a,b)有f(x)≤f(xo)因xn∈(a,b) 故当Ax充分小时,有x0+Ax∈(an,b 从而f(x+4x)-f()×0 OD 高等數粤
x f x x f x x f x x f x x x + − = + − + → − → ( ) ( ) lim ( ) ( ) lim 0 0 0 0 0 0 从而 ( ) 0 = f x 设f (x0 )为f (x)在开区间(a, b)内的最大值, 即, x(a, b), 有 f (x) f (x0 ). 故当|x|充分小时, 有x0+x (a, b), 从而 f (x0+x) – f (x0 ) 0 因x0(a, b)

NAN DA XUE JING PIN KE CHENG (1)当Ax>0时f(+△x)-f(x)0, 由保号性定理, f(o)=li f(x+△x)-f( △ OD 高等數粤
(1)当x >0时, 0, ( ) ( ) 0 0 + − x f x x f x 由保号性定理, 0. ( ) ( ) ( ) lim 0 0 0 0 + − = → + x f x x f x f x x 令x →0 +

NAN DA XUE JING PIN KE CHENG 2)当Ax0, 由保号性定理,(x)=imf(x4x)-/(x)20 △x 综合(1)2)有0≤f(x)0,故f(xo)=0, 类似可证∫(x)在x取最小值的情形 OD 高等數粤
(2)当x <0时, 0, ( ) ( ) 0 0 + − x f x x f x 由保号性定理, 0. ( ) ( ) ( ) lim 0 0 0 0 + − = → − x f x x f x f x x 令x →0 – , 综合(1),(2)有0 f '(x0 ) 0, 故 f '(x0 ) = 0, 类似可证f (x)在x0取最小值的情形

NAN DA XUE JING PIN KE CHENG 注1.因f(xo)表示曲线y≠f(x)上点Mx0,f(x)处切 线斜率而(x)=表示该点处切线斜率为0 因此,引理在几何上表示若yf(x)在(an,b) 内部某点x处取最大(小)值,且在x可导,则 在M(xo,f(xo)处的切线平行于x轴.如图 OD 高等數粤
注1. 因f '(x0 )表示曲线y =f (x)上点M(x0 , f (x0 ))处切 线斜率. 而f '(x0 )=0表示该点处切线斜率为0. 因此, 引理在几何上表示: 若y =f (x)在(a, b) 内部某点x0处取最大(小)值, 且在x0可导, 则 在M(x0 , f (x0 ))处的切线平行于x轴. 如图

NAN DA XUE JING PIN KE CHENG y了f(x) M x OD 高等數粤
b M a 0 x y x0 M x0 y =f (x)

NAN DA XUE JING PIN KE CHENG 注2.若f(∞x)在区间[a,b的端点a(或b处取得 最大(小)值.不能保证f(a)(或∫(b)=0 即,在端点M(a,f(a)减或Mb,f(b)处切线不 定平行于x轴 如图 y=f( 0 OD 高等數粤
注2. 若f (x)在区间[a, b]的端点a(或b)处取得 最大(小)值. 不能保证f '(a)(或 f '(b))=0. 即, 在端点M(a, f (a))或M(b, f (b))处切线不 一定平行于x 轴. 如图. 0 a b x y y = f (x)

NAN DA XUE JING PIN KE CHENG 定理1.(罗尔中值定理).若yf(x)在[a,b上连续, 在(a,b)内可导,且f(a)=f(b).则在(a,b)内 至少存在一点ξ,使得f(2)=0 证:因f(x)在[a,b上连续,从而可取得最大值M f(xo)和最小值m=f(x1)其中,xo,x1∈[an,b OD 高等數粤
定理1. (罗尔中值定理). 若y=f (x)在[a, b]上连续, 在(a, b)内可导, 且f (a) = f (b). 则在(a, b)内 至少存在一点 , 使得 f ( )= . 证: 因f (x)在[a, b]上连续, 从而可取得最大值M = f (x0 )和最小值m = f (x1 ). 其中, x0 , x1 [a, b]

NAN DA XUE JING PIN KE CHENG (1)若m=M 因m≤f(x)≤M.即,M≤f(x)≤M,所以f(x)=M 有∫'(x)=0,故∈(a2b)有∫()=0 OD 高等數粤
(1) 若 m=M , 因m f (x) M. 即, M f (x) M, 所以f (x)=M. 有f '(x )=, 故 (a, b)有 f '( )=

NAN DA XUE JING PIN KE CHENG (2)若m<M 因f(a)=f(b)故在m,M中必至少有 个不等于f(a)(=f(b), 不妨设Mf(x0)≠f(a)=f(b) 故x0≠a,x≠b,从而x∈(a,b) 由引理,∫'(x)=0,记2=x0, 即彐∈(a,b)使∫'(2)=0 OD 高等數粤
(2) 若 m<M , 因f (a) = f (b). 故在m, M中必至少有 一个不等于f (a) (= f (b)), 由引理, f '(x0 )=, 记 = x0 , 即 (a, b)使 f ' ()= . 不妨设M= f (x0 ) f (a)= f (b), 故 x0 a, x0 b, 从而x0 (a, b)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第三章 函数的极限与连续性 §3-4 微分与差分.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第四章 一元函数的导数和微分 §4-3 高阶导数.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第四章 一元函数的导数和微分 §4-1 导数的概念 §4 – 2 求导法则.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第三章 函数的极限与连续性 第六节 无穷小量的比较 第七节 函数的连续性 第九节 闭区间上连续函数的性质 第十节 函数项级数.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第三章 函数的极限与连续性 第一节 函数的极限 第二节 无穷大量、无穷小量 第三节 极限运算法则 第四节 函数极限存在定理 第五节 两个重要极限.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第二章 数列的极限与常数项级数(2.1)数列的极限与常数项级数.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 集合与函数.ppt
- 《微积分》课程教学课件(PPT讲稿)第一章 多元函数的概念、极限与连续(1.2)偏导数与全微分.ppt
- 《微积分》课程教学课件(PPT讲稿)第一章 多元函数的概念、极限与连续(1.1)多元函数的概念、极限与连续.ppt
- 2003级《大学数学I》第二学期期末考试试题.ppt
- 2003级《大学数学I》第一学期期末考试试题.ppt
- 《微积分》课程教学资源(二、三)练习5.1.ppt
- 《微积分》课程教学资源(二、三)练习4.1.ppt
- 《微积分》课程教学资源(二、三)练习3.1.ppt
- 《微积分》课程教学资源(二、三)练习2.2.ppt
- 《微积分》课程教学资源(二、三)练习1.3.ppt
- 《微积分》课程教学课件(PPT讲稿)第五章 微分方程(5.7)微分方程自测题.ppt
- 《微积分》课程教学课件(PPT讲稿)第五章 微分方程(5.6)微分方程小结.ppt
- 《微积分》课程教学课件(PPT讲稿)第五章 微分方程(5.5)微分方程的简单应用.ppt
- 《微积分》课程教学课件(PPT讲稿)第五章 微分方程(5.4)二阶常系数线性微分方程与Euler方程.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 向量代数与空间解析几何(1.1)向量的概念及向量的表示.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 向量代数与空间解析几何(1.2)混合积的坐标表示式.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第三章 矩阵理论 §1 矩阵及其运算 §2 矩阵的初等变换 §3 逆矩阵.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)空间曲线及其方程、第二章 行列式.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第三章 矩阵理论 §4 欧氏空间 §5 线性变换 第五章 线性方程组 §1 线性方程组的消元法.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 向量代数与空间解析几何(1.3-1.4)多元函数的偏导数、多元函数的微分.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 向量代数与空间解析几何(1.5-1.6)多元复合函数的导数、隐函数的导数.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第一章 向量代数与空间解析几何(1.7-1.8)高阶偏导数及泰勒公式、方向导数.ppt
- 湖南大学:《高等数学》课程PPT教学课件(讲稿)第二章 数列的极限与常数项级数(2.2)三重积分.ppt
- 大学数学学习辅导丛书:《概率论与数理统计习题全解指南》PDF电子书(浙江大学,第二、三版).pdf
- 浙江大学:《复变函数与积分变换》电子书(共七章).ppt
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)习题三解答.pdf
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)习题一解答.pdf
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)复习题目.pdf
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)习题二解答.pdf
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)习题四解答.pdf
- 西安交通大学:《复变函数与积分变换》课程教学资源(课后习题解答)习题五解答.pdf
- 《高等数学》课程教学资源:复习公式(公式手册).doc
- 同济大学:《线性代数》课程PPT教学课件(第五版)第一章 行列式(1.1)二阶与三阶行列式.ppt
- 同济大学:《线性代数》课程PPT教学课件(第五版)第一章 行列式(1.2)全排列及其逆序数.ppt