北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第四章 量子力学中的力学量

第四章量子力学中的力学量 I.在以坐标表示的波函数中,要计算px 的平均值时,我们必须引进算符 ih p、=Jv(t(iQ)yuc,or
第四章 量子力学中的力学量 Ⅰ. 在以坐标表示的波函数中,要计算 的平均值时,我们必须引进算符 x p i ˆ x ∂ = − ∂ h x pˆ * p (r, t)( i ) (r, t)dr x x ∂ =ψ − ψ ∂ ∫ h

于是要问,力学量用算符来表示,那它的性质 是什么?从物理上讲, 对算符有那些制约 Ⅱ.在一些定态中,求一个体系的能量可取 值,是通过在一定条件下,求解不含时间的薛定 谔方程(或能量本征方程) Hu=Enu 同样要问
于是要问,力学量用算符来表示,那它的性质 是什么?从物理上讲, 对算符有那些制约 Ⅱ . 在一些定态中,求一个体系的能量可取 值,是通过在一定条件下,求解不含时间的薛定 谔方程(或能量本征方程) 同样要问, n nn Hu E u ˆ =

其他力学量的可测得值是如何确定的? Ⅲ.在某一时刻,ⅹ和px不能同时取确定值 是否所有力学量都不能同时取确定值,那些 可以,那些不可以? Ⅳ.在量子力学中,体系的波函数对体系作 了充分的描述,即可以给出体系所有可能的信息 那如何从v(r,t)得到这些信息?
其他力学量的可测得值是如何确定的? Ⅲ. 在某一时刻, 和 不能同时取确定值 是否所有力学量都不能同时取确定值,那些 可以,那些不可以? Ⅳ . 在量子力学中,体系的波函数对体系作 了充分的描述,即可以给出体系所有可能的信息 。 那如何从 得到这些信息 ? . xˆ x pˆ ψ(r,t)

V.当ⅴ(x,t)=ⅴ(x)时,体系能量平均值 不随t变,体系处于某能量状态的概率,也不 随时间改变。力学量的平均值如何随t变?
Ⅴ.当 时,体系能量平均值 不随 t 变,体系处于某能量状态的概率,也不 随时间改变。力学量的平均值如何随 t 变? V(x,t) V(x) =

§41表示力学量算符的性质 (1)一般运算规则:一个力学量如以算符O 表示。它是一运算 Oy(x,y, z=p(x,y, z) 代表一个变换,是将空间分布的概率幅从 y(x,y, z) p(x,y, z)
§4.1 表示力学量算符的性质 (1)一般运算规则:一个力学量如以算符 表示。它是一运算 代表一个变换,是将空间分布的概率幅从 O ˆ O (x, y, z) (x, y, z) ˆ ψ = ϕ (x, y, z) (x, y, z) O ˆ ψ ⎯⎯→ϕ

例:O=e-m,,于是 Oy(x =e dx y(x) a n! dx =Y(x-a op(X)
例: ,于是 x iap / ˆ O e ˆ − = h O ( x ) e ( x ) ˆ dx d a ψ ψ − = ∑ ∞ = − = n 0 n n n ( x ) dx d n! ( a ) ψ = ψ ( x − a ) = ϕ ( x )

即将体系的概率密度幅沿ⅹ方向移动距离a. xI-a a A.力学量算符至少是线性算符;量子力学 方程是线性齐次方程。 由于态叠加原理,所以在量子力学中的算 符应是线性算符。所谓线性算符,即
即将体系的概率密度幅沿 x 方向移动距离 a . A. 力学量算符至少是线性算符;量子力学 方程是线性齐次方程。 由于态叠加原理,所以在量子力学中的算 符应是线性算符。所谓线性算符,即

O(cy)=cOy O(CY1+C2V2)=COv1+c2Oy2 例如1 A at C1Y1 +C2Y2
例如 1. O(c ) cO ˆ ˆ ψ = ψ 11 22 1 1 2 2 O(c c ) c O c O ˆ ˆˆ ψ+ ψ = ψ+ ψ ψ ψ Hˆ t i = ∂∂ O ψ1 ψ2 1 1 2 2 c ψ + c ψ

ix(c叫1+c22)=c1v1+e at C,Hu1+ 2 Hi 2 仅当H是线性算符 H(C11+ C2y2) 例如2.对不显含时间的薛定谔方程 HU=E 若Hv1=Ev1,Hv2=Ev2,则 Y1+C2Y
例如 2. 对不显含时间的薛定谔方程 若 , ,则 1 1 2 2 1 1 2 2 t c i t (c c ) c i t i ψ ψ ψ ψ ∂∂ + ∂∂ + = ∂∂ O O O 1 1 2H 2 ˆ H c ˆ = c ψ + ψ 仅当 是线性算符 Hˆ H(c c ) ˆ = 1ψ1 + 2ψ2 H ˆ ψ = Eψ H 1 E 1 ˆ ψ = ψ H 2 E 2 ˆ ψ = ψ 1 1 2 2 c ψ + c ψ

E(c11+C2V2) CEV1+ c2Ey2 C,Hi +ch 2 2 仅当H是线性算符 H(CVI+C2y2)=E(C1V1+C2Y2) 量子力学不仅要求力学量算符是线性算符, 而且方程是线性齐次
量子力学不仅要求力学量算符是线性算符, 而且方程是线性齐次 , E ( c c ) 1 ψ 1 + 2 ψ 2 1 1 2 E 2 = c E ψ + c ψ 1 1 2 H 2 ˆ H c ˆ = c ψ + ψ H ( c c ) E ( c c ) ˆ 1 ψ 1 + 2 ψ 2 = 1 ψ 1 + 2 ψ 2 仅当 是线性算符 Hˆ
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第六章 量子力学的矩阵形式及表示理论.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第八章 量子力学中的近似方法.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第五章 变量可分离型的三维定态问题.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第七章 自旋.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第二章 波函数与波动方程.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第三章 一维定态问题.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第一章 绪论、经典物理学的失效.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学大纲(教学计划,程檀生).pdf
- 北京大学:《核物理与粒子物理导论》课程资源_作业习题.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第七章 金属、氧化物和半导体的MOS结构.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第六章 金属和半导体接触与异质结(M/S Contact).pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第五章 半导体的PN结.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第四章 非平衡半导体中载流子的运动规律.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第三章 平衡态半导体的物理基础.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第二章 半导体的基本性质.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(教案讲稿)第一章 绪论.pdf
- 北京大学:《半导体物理学 Physics of Semiconductors》课程教学资源(试题)半导体物理本科生期末考试试卷答案.pdf
- 北京大学:《近代物理实验 Modern Physics Laboratory》课程教案(综合物理实验)_MgB2超导体的研究.pdf
- 北京大学:《近代物理实验 Modern Physics Laboratory》课程教案(独立实验)_9-3 用热激活法测量肖特基势垒高度.pdf
- 北京大学:《近代物理实验 Modern Physics Laboratory》课程教案(独立实验)_9-2 用电容-电压法测量半导体中的杂质分布.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第九章 含时间的微扰论——量子跃迁(谈谈量子群和量子代数).pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(电子教案)第十章 量子散射的近似方法.pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(试卷习题)各期末试题A(含答案).pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(试卷习题)各期末试题B(含答案).pdf
- 北京大学:《量子力学 Quantum Mechanics》课程教学资源(试卷习题)各章作业习题.pdf
- 复旦大学:《热力学与物理统计》课程教学研究_玻色-爱因斯坦凝结.pdf
- 复旦大学:《热力学与物理统计》课程教学研究_统计规律性.pdf
- 复旦大学:《热力学与物理统计》课程教学研究_分子热运动和统计分布.pdf
- 复旦大学:《热力学与物理统计》课程教学研究_力学规律和统计规律的关系.pdf
- 复旦大学:《热力学与物理统计》课程教学研究_教学研究.doc
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)部分章节作业习题(题解).pdf
- 复旦大学:《热力学与物理统计》课程教学大纲 Thermodynamics & Statistical Physics(一).pdf
- 复旦大学:《热力学与物理统计》课程教学大纲 Thermodynamics & Statistical Physics(二).pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2004热力学试题及答案.pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2004统计物理试题及答案.pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2006-2007期末试题A卷答案.pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2006-2007期末试题A卷.pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2006-2007期末试题B卷答案.pdf
- 复旦大学:《热力学与物理统计》课程教学资源(试卷习题)2006-2007期末试题B卷.pdf
- 复旦大学:《热力学与物理统计》课程教学课件(讲义)Bose-Einstein凝结(Condensation,BEC).doc