《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 4 Angular Momentum

4.1Angular MomentumClassicallytheangularmomentumofanAPisolatedsystemis a constant ofthemotionrsineQuantummechanicallythismeansthatweYexpecttobeabletofind statesofdefiniteangular momentum.In three dimensions, the angular momentum about a point is the magnitude p of themomentum multiplied by theperpendiculardistance of the momentumvectorfromthe point (r sin inthediagram)The angularmomentum describesrotation about an axis perpendicular totheplane containing r and p, so in vector notation it is J= r X p
4.1 Angular Momentum Classically, the angular momentum of an isolated system is a constant of the motion. Quantum mechanically, this means that we expect to be able to find states of definite angular momentum. In three dimensions, the angular momentum about a point is the magnitude p of the momentum multiplied by the perpendicular distance of the momentum vector from the point (r sin θ in the diagram). The angular momentum describes rotation about an axis perpendicular to the plane containing r and p, so in vector notation it is J = r × p

4.2AngularmomentumoperatorsThe angular momentum is the vector product J= r X p. That is,J, = yp. -zPyJ,= zP-XPJ. = xPy - yPxMaking the usual substitutions yields the operatorsaaJ, =-in(vo, -2o,)=-ihayCj, = -in(za, - xa.)FC-tj, =-in(xa, - yo.)y
4.2 Angular momentum operators The angular momentum is the vector product J = r × p. That is, Making the usual substitutions yields the operators x z y y x z z y x J yp zp J zp xp J xp yp ˆ ˆ ˆ x y z J i y z z y J i z x x z J i x y y x ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x z y y x z z y x J i y z J i z x J i x y

Angular momentum operators don't commuteThe components of the angular momentum operator do not commute with each otherWriting a/ax = a,for brevity, and remembering that a, x = 1 + xax, but a, y = y, anda,o,=a,ox,j,j,w=(-in)(va. -z,)(-in)(zo, -xo.)y--h2 (vo,z0, -yo.xo. -2z0,20+ +z0,xo.)y= -h? (vo, + yza,a, - xya.a. -2a,a + xza,a.)yj,j=(-in)(-o, -xa.)(-in)(vo. -z,)y=-h2 (2o.yo. -xo.yo. -z0,20, +xo,20,)y=-h2(yz0,a. -xya.a,-2a,a, +xa, + xza.a,)ywe find thatJx,j,=jj,-j,j,=-h2(vor-xa,)=inj
Angular momentum operators don’t commute The components of the angular momentum operator do not commute with each other. Writing 𝜕/𝜕𝑥 = 𝜕መ 𝑥 for brevity, and remembering that 𝜕መ 𝑥 𝑥 = 1 + 𝑥𝜕መ 𝑥 , but 𝜕መ 𝑥 𝑦 = 𝑦𝜕መ 𝑥 and 𝜕መ 𝑥𝜕መ 𝑦 = 𝜕መ 𝑦𝜕መ 𝑥 , 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x y z y x z z x z z y x y z x z x z z y x y z J J i y z i z x y z y x z z z x y yz xy z xz 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ y x x z z y x z z z x y z y x z z z x y y z y J J i z x i y z z y x y z z x z yz xy z x xz 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , x y x y y x x y z J J J J J J y x i J we find that

Commutation relationsforangularmomentumWehavefoundthat7[J,j,]=jj,-j,j,=-ha1[,j,]-injSimilarly,[3.,j,]=inj,[3,j,]-inj,(Note that x, y and z appear in cyclic order in these equations.)The uncertainty principle tells us that, for example,N,N,([.j,J)-.)so in general we cannot find wavefunctions that are simultaneously eigenfunctions of two ormore of Jx , J, and Jz . The only exception is that it is possible to find wavefunctions forwhich Jx, J, and J, are all exactly zero
Commutation relations for angular momentum We have found that Similarly, (Note that x, y and z appear in cyclic order in these equations.) The uncertainty principle tells us that, for example, so in general we cannot find wavefunctions that are simultaneously eigenfunctions of two or more of 𝐽መ 𝑥 , 𝐽መ 𝑦 and 𝐽መ 𝑧 . The only exception is that it is possible to find wavefunctions for which Jx , Jy and Jz are all exactly zero. 2 ˆ ˆ ˆ ˆ ˆ ˆ , ˆ ˆ ˆ , x y x y y x x y z J J J J J J y x x y J J i J ˆ ˆ ˆ , y z x J J i J ˆ ˆ ˆ , z x y J J i J 1 1 ˆ ˆ , 2 2 x y x y z J J J J J

However, Jx, J, and J, all commute with j? = J,2 + j,2 + j2. For example,[.,J3]-J.3?-j2j-JSS-JJJ+JJ-JS[3,j]j,+j[,j]=in(j,j,+j,j)and similarly [z,J,2] = -in(JJx +J,J,), while [Jz,J2] = 0Adding these results together shows that [1 z, J2] = 0Therefore we can find wavefunctions that are eigenfunctions of both f2 and oneonly ofjx , J, and Jz . It is customary to choose Jz
However, 𝐽መ 𝑥 , 𝐽መ 𝑦 and 𝐽መ 𝑧 all commute with 𝑱2 = 𝐽መ 𝑥 2 + 𝐽መ 𝑦 2 + 𝐽መ 𝑧 2 . For example, and similarly 𝐽መ 𝑧 ,𝐽መ 𝑦 2 = −𝑖ℏ 𝐽መ 𝑦 𝐽መ 𝑥 + 𝐽መ 𝑥 𝐽መ 𝑦 , while 𝐽መ 𝑧 ,𝐽መ 𝑧 2 = 0. Adding these results together shows that 𝐽መ 𝑧 , 𝑱2 = 0. Therefore we can find wavefunctions that are eigenfunctions of both 𝑱2 and one only of 𝐽መ 𝑥 , 𝐽መ 𝑦 and 𝐽መ 𝑧 . It is customary to choose 𝐽መ 𝑧 . 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , , ˆ ˆ ˆ ˆ z x z x x z z x x x z x x z x x x z z x x x z x y x x y J J J J J J J J J J J J J J J J J J J J J J J J i J J J J

SphericalpolarcoordinatesBefore proceeding, we recall the definition of spherical polar coordinates. They aredefined byx = r sindcos(py=rsinosingpz = r cosoand converselyr =/x?+y+??Q = arccos(= / r)β = arctan(y / x)The volume element for integration over spherical polar coordinates isdV=r?sinodrdodpForgetting the r?sino is a very common source of mistakes
Spherical polar coordinates Before proceeding, we recall the definition of spherical polar coordinates. They are defined by and conversely The volume element for integration over spherical polar coordinates is Forgetting the r 2 sinθ is a very common source of mistakes. sin cos sin sin cos x r y r z r 2 2 2 arccos / arctan / r x y z z r y x 2 d sin d d d V r r

aaaOra00adaxaxa0axadaraxOrOr2x=2rsin0cosd=sinOcosΦOxOxaa(sind+cotecosda0adaCiicoscotsin00Oda=-inInvolved only 0 and Φada2a1+cote-h000sin?a
y z y z y z , , , r x x r x x ˆ (sin cot cos ) x J i , 2 2 2 sin cos , sin cos y z r r r x r x x ˆ (cos cot sin ) y J i ˆ z J i 2 2 2 2 2 2 1 ˆ ( cot ) sin J Involved only and

V=-V(r)Acentral forceh?v? +V(r)2ma2P21f11Or.2forfrr sin'ofof0a22a1↑2Or2r?h?r Or[H,3,]=0H,j2=01aj2aj.+-,H)=0I.12,H)=0dtatatindtinh
A central force V =V(r) 2 2 ˆ ˆ ˆ ( ) 2 H T V V r m Ñ 2 = ¶ 2 ¶r 2 + 2 r ¶ ¶r + 1 r 2 ¶ 2 ¶q 2 + 1 r 2 cotq ¶ ¶q + 1 r 2 sin 2 q ¶ ¶f 2 2 2 2 2 2 2 1 ˆJ r r r r 2 ˆ ˆ H J, 0 z ˆ ˆ H J, 0 2 2 2 ˆ 1 ˆ ˆ [ , ] 0 d J J J H dt i t ˆ ˆ 1 ˆ ˆ [ , ] 0 z z z d J J J H dt i t

4.3SphericalharmonicsIn spherical polar coordinates, j, = -in %. J, commutes with j2, so we can find functions thatare eigenfunctions of both. Eigenfunctions of J, satisfy the eigenvalue equationj.y=-ih-y=kyaThe unnormalised solutions are of the form exp(ik/h), but the value of k is restricted by therequirement that the wavefunction is single-valued - that is, ( + 2r) must be the same as(p). This means thatexp(ik(β + 2元) / h) = exp(ikp / h)Thus k = Mh, where M is an integer (positive, negative or zero), and the wavefunctionsbecome(afternormalisation)1exp(iMp)VM2元Theeigenvalue is Mh :the angular momentum is an integer multiple ofh
In spherical polar coordinates, 𝐽መ 𝑧 = −𝑖ℏ 𝜕 𝜕𝜑. 𝐽መ 𝑧 commutes with 𝑱2 , so we can find functions that are eigenfunctions of both. Eigenfunctions of 𝐽መ 𝑧 satisfy the eigenvalue equation The unnormalised solutions are of the form exp(𝑖𝑘𝜑/ℏ), but the value of k is restricted by the requirement that the wavefunction is single-valued — that is, 𝜓(𝜑 + 2𝜋) must be the same as 𝜓(𝜑). This means that Thus 𝑘 = 𝑀ℏ, where M is an integer (positive, negative or zero), and the wavefunctions become (after normalisation) The eigenvalue is 𝑀ℏ : the angular momentum is an integer multiple of ℏ. ˆ z J i k exp 2 / exp / ik ik 1 exp 2 M iM 4.3 Spherical harmonics

Eigenfunctions of f2J2 is more complicated:aa2a112 -一sinsin? osingaeaoTo obtain eigenfunctions of f2 we have to multiply the functions eiMo by suitable functions of0. WriteYM = OM(0)M(β)where Φm(p) = eiMs, Then the eigenvalue equation J2 Yjm = AY jm becomesM?aaJ'Yjm =-h?sine0M(0)ΦM(p)=a0JM(0)Φ(p)singaoaosin?0We can cancel out Φm(p) to get an eigenvalue equation in 0. The eigenvalues turn out to beh?JU +1)for integerJ.The functions Y μm(0, β) are spherical harmonics
Eigenfunctions of 𝑱 𝟐 𝑱2 is more complicated: To obtain eigenfunctions of 𝑱2 we have to multiply the functions e 𝑖𝑀𝜑 by suitable functions of θ. Write where Φ𝑀(𝜑) = e 𝑖𝑀𝜑 . Then the eigenvalue equation 𝑱2𝑌𝐽𝑀 = 𝜆𝑌𝐽𝑀 becomes We can cancel out Φ𝑀(𝜑) to get an eigenvalue equation in θ. The eigenvalues λ turn out to be ℏ 2 𝐽(𝐽 + 1) for integer J. The functions 𝑌𝐽𝑀(𝜃,𝜑) are spherical harmonics. 2 2 2 2 2 1 1 ˆ sin sin sin J ( ) ( ) YJM JM M 2 2 2 2 1 ˆ sin ( ) ( ) ( ) ( ) sin sin JM JM M JM M M Y J
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 3 Operators in Quantum Mechanics.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 2 Some Simple Cases.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 1 The Basic Concepts of Quantum Mechanics.pdf
- 《无机化学 Chemical Theory》课程教学资源(书籍文献)群论在化学中的应用(科顿).pdf
- 《无机化学 Chemical Theory》课程教学资源(书籍文献)结构化学基础,周公度编著,北京大学出版社.pdf
- 《无机化学 Chemical Theory》课程教学资源(书籍文献)化学键的本质(鲍林).pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-6.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-5.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-4.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-3.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-2.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)i1-1.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part II 分子结构的测量与表征(How to measure and charaterize the structure of molecules)测定分子结构.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)Chapter 3 反应性(Reactivity).pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)第二章 分子电子结构(Chapter 2 The Electronic Structures of Molecules)第三讲.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)第二章 分子电子结构(Chapter 2 The Electronic Structures of Molecules)第二讲.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)第二章 分子电子结构(Chapter 2 The Electronic Structures of Molecules)第一讲.pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)Chapter 2 分子的电子结构(The Electronic Structure of Molecules).pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)第一章 原子结构(Chapter 1 The Electronic Structures of Atoms)第二讲(I-a-2).pdf
- 《基础化学 Fundamentals in Chemistry》课程教学课件(分子形状与结构 The Shapes and Structures of Molecules)Part I 原子、分子的电子结构与化学反应(The Electronic Structure of Atoms and Molecules and Chemical Reactions)第一章 原子结构(Chapter 1 The Electronic Structures of Atoms)第一讲(I-a-1).pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 5 The Hydrogen atoms.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 6 Many-electron atoms.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 7 Approximate methods-the Variation Method.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part I Basic concepts of Quantum mechanics Chapter 8 Diatomic molecules.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 1 Symmetry and Point Group 对称性与点群.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 2 Representations 群表示.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 3 Direct Products 直积.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 4 Vanishing Integrals 零积分.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 5 Molecular Orbitals 分子轨道.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 6 Huckel Molecular Orbitals 休克尔分子轨道.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 6 a complementary part regarding the Graphical Representations of HMOs.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 7 Normal Modes 简正模.pdf
- 《无机化学 Chemical Theory》课程教学资源(讲稿)Part II Molecular Spectroscopy Chapter 8 Miscellany 其它.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(书籍文献)苏文锻编著, 系综原理, 南强出版社.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(书籍文献)唐有祺, 统计力学及其在物理化学中的应用.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(书籍文献)Paul L. Houston, Chemical Kinetics and Reaction Dynamics.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(书籍文献)Santosh K. Upadhyay, Chemical Kinetics and Reaction Dynamics,Springer.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(讲稿)Part I Statistical Mechanics Lecture 1(Class 1)统计力学基本知识.pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(讲稿)Part I Statistical Mechanics Lecture 2(Class 2)Ensembles(系综).pdf
- 《Statistical Mechanics, Chemical Kinetics & Reaction Dynamics》课程教学资源(讲稿)Part I Statistical Mechanics Lectures 3-4(Class 3 & 4)简单体系.pdf
