复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic

Discrete mathematics Yi li Software School Fudan University June20.2012
Discrete Mathematics Yi Li Software School Fudan University June 20, 2012 Yi Li (Fudan University) Discrete Mathematics June 20, 2012 1 / 15

Review o Soundness and completeness Theorem ● Compactness Theore o Size of model o Compactness theorem
Review Soundness and Completeness Theorem Compactness Theorem Size of model Compactness theorem Yi Li (Fudan University) Discrete Mathematics June 20, 2012 2 / 15

Or utline o Application of logic o Limitation of first Order logic
Outline Application of Logic Limitation of First Order Logic Yi Li (Fudan University) Discrete Mathematics June 20, 2012 3 / 15

Application Example(linear order) A structure A=< A, < is called an ordering if it is a model of the following sentences Solution )(-x<x) d。d=(x)(y)(z)(x<y∧y<z)→x<z (Vx)(y)(x<yvx=yvy<x)
Application Example (linear order) A structure A = is called an ordering if it is a model of the following sentences: Solution. Φord = (∀x)(¬x < x), (∀x)(∀y)(∀z)((x < y ∧ y < z) → x < z), (∀x)(∀y)(x < y ∨ x = y ∨ y < x). Yi Li (Fudan University) Discrete Mathematics June 20, 2012 4 / 15

Application( Cont. Example(dense order) In order to describe dense linear orders we could add into linear order the following sentence vxvy(x<y→3z(x<z∧z<y)
Application(Cont.) Example (dense order) In order to describe dense linear orders, we could add into linear order the following sentence ∀x∀y(x < y → ∃z(x < z ∧ z < y)) Yi Li (Fudan University) Discrete Mathematics June 20, 2012 5 / 15

Application( Cont. Example(Graphs) Let C=R where R is a binary relation. We can characterize undirected irreflexive graphs with O VXR(x, x). oxvy(R(x,y)→R(y,x)
Application(Cont.) Example (Graphs) Let L = {R} where R is a binary relation. We can characterize undirected irreflexive graphs with 1 ∀x¬R(x, x), 2 ∀x∀y(R(x, y) → R(y, x)). Yi Li (Fudan University) Discrete Mathematics June 20, 2012 6 / 15

Application( Cont. Example(Groups) Let C=[, e where is a binary relation and e is a constant symbol. The class of group is described as o Vxe x=xe=x O VXVyVzX·(yz)=(xy)·z, wxyx·y=y.x=e
Application(Cont.) Example (Groups) Let L = {·, e} where · is a binary relation and e is a constant symbol. The class of group is described as 1 ∀xe · x = x · e = x, 2 ∀x∀y∀zx · (y · z) = (x · y) · z, 3 ∀x∃yx · y = y · x = e. Yi Li (Fudan University) Discrete Mathematics June 20, 2012 7 / 15

Application( Cont. Example(Equivalence relation) The equivalence relation can be formalized with a single binary relation symbols as follows: Solution (XR(x, x), (x)(y(R(x,y)>R(, x) (x)(y)(Vz)(R(x,y)∧R(y,z))→R(x,z)
Application(Cont.) Example (Equivalence relation) The equivalence relation can be formalized with a single binary relation symbols as follows: Solution. Φequ = (∀x)R(x, x), (∀x)(∀y)(R(x, y) → R(y, x), (∀x)(∀y)(∀z)((R(x, y) ∧ R(y, z)) → R(x, z)). Yi Li (Fudan University) Discrete Mathematics June 20, 2012 8 / 15

Application( Cont. Example Suppose R is a binary relation. If it is non-trival, which means nonempty, transitive and symmetric, then it must be reflexive Solution We can represent these properties as O nontriv=(Vxr(x,y) O sym=(Vx)(Vy(R(,y)+R(, x)) o ref=(Vx)R(x, x) o trans=(wx)(y)(z)(R(x,y)∧R(y,z)→R(x,z) Then itrans, sym, nontriv) ref
Application(Cont.) Example Suppose R is a binary relation. If it is non-trival, which means nonempty, transitive and symmetric, then it must be reflexive. Solution. We can represent these properties as: 1 nontriv = (∀x)(∃y)R(x, y). 2 sym = (∀x)(∀y)(R(x, y) → R(y, x)). 3 ref = (∀x)R(x, x). 4 trans = (∀x)(∀y)(∀z)((R(x, y) ∧ R(y, z)) → R(x, z)). Then {trans,sym, nontriv} |= ref . Yi Li (Fudan University) Discrete Mathematics June 20, 2012 9 / 15

Compactness Theorem satisfiable in arbitrarily large finite models is satisfiable in some<'s Let l be a first-order language. Any set S of sentences of l that infinite model Sketch Idea Suppose s is satisfiable in arbitrary large finite models. Let r be a 2-ary relation symbol that is not part of the language L, and enlarge L to L' by adding R We can modify the interpretation of R without affecting the truth values of members of s, sincer does not occur in members of S. so we can write a sentence An that asserts there are at least n thing We can imply Theorem by applying Compactness Theorem
Compactness Theorem Let L be a first-order language. Any set S of sentences of L that is satisfiable in arbitrarily large finite models is satisfiable in some infinite model. Sketch Idea: Suppose S is satisfiable in arbitrary large finite models. Let R be a 2-ary relation symbol that is not part of the language L, and enlarge L to L 0 by adding R. We can modify the interpretation of R without affecting the truth values of members of S, since R does not occur in members of S. So we can write a sentence An that asserts there are at least n thing. We can imply Theorem by applying Compactness Theorem. Yi Li (Fudan University) Discrete Mathematics June 20, 2012 10 / 15
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_10 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_11 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_12 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_13 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_15 Application and Limitations.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)绪论、第一章 集合的基本概念.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第二章 关系(主讲:吴永辉).pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第三章 函数.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)集合论习题解析——经典习题与考研习题.pdf