复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03

Discrete mathematics Yi Li Software school Fudan universit March 13. 2012
Discrete Mathematics Yi Li Software School Fudan University March 13, 2012 Yi Li (Fudan University) Discrete Mathematics March 13, 2012 1 / 20

Review of lattice o Special Lattice ● Boolean Algebra
Review of Lattice Ideal Special Lattice Boolean Algebra Yi Li (Fudan University) Discrete Mathematics March 13, 2012 2 / 20

Examples of Proof Zenos paradox o Zhuang Zis o Gong Sunlong's "a white horse is not a horse How can you persuade yourself and the others?
Examples of Proof Zeno’s paradox Zhuang Zi’s paradox Gong Sunlong’s “a white horse is not a horse” ... How can you persuade yourself and the others? Yi Li (Fudan University) Discrete Mathematics March 13, 2012 3 / 20

Examples of Proof A×iom The axiom of group theory can be formulated as follows (G1) For all 9, z:(aoy)ox=xo(yo 2) G2)Fora∥x:xoe=x (G3) For every there is a y such that coy =e Theorem For every c there is a y such that yo =e
Examples of Proof Axiom The axiom of group theory can be formulated as follows: (G1) For all x, y, z: (x ◦ y) ◦ z = x ◦ (y ◦ z). (G2) For all x: x ◦ e = x. (G3) For every x there is a y such that x ◦ y = e. Theorem For every x there is a y such that y ◦ x = e. Yi Li (Fudan University) Discrete Mathematics March 13, 2012 4 / 20

What is LogIc Premise Argument o Conclusion o Follow o Proof
What is Logic Premise Argument Conclusion Follow Proof Yi Li (Fudan University) Discrete Mathematics March 13, 2012 5 / 20

History of Mathematical Logic Aristotle(384-322 B. C ) theory of syllogistic De morgan(1806-71), Boole(1815-64) Schroder(1841-1902 o Fregel(1848-1925), Russell(18721970) ●Post(1897-1954),Gode(190678), Henkin(?) Herbrand(1908-31) o Robbinson(1930-): Beth and Smullyan o Leibniz(1646-1716)and Hilbert(1862-1943)
History of Mathematical Logic Aristotle(384-322 B.C.): theory of syllogistic De Morgan(1806-71), Boole(1815-64), Schr¨oder(1841-1902) Frege(1848-1925), Russell(1872-1970) Post(1897-1954), G¨odel (1906-78), Henkin(??), Herbrand(1908-31) Robbinson(1930-); Beth and Smullyan Leibniz(1646-1716) and Hilbert(1862-1943) Yi Li (Fudan University) Discrete Mathematics March 13, 2012 6 / 20

Introduction to Mathematical Logic o First order logic Propositional Logic o Predicate logic High order lo o Other type of logic ● Modal logic o Intuitionistic logic ● Temporal logic
Introduction to Mathematical Logic First order logic Propositional Logic Predicate Logic High order logic Other type of logic Modal logic Intuitionistic logic Temporal logic Yi Li (Fudan University) Discrete Mathematics March 13, 2012 7 / 20

Introduction to Mathematical Logic o Proof system Axiom Tablea o Resolution ° Two Components o Algorithmic approach
Introduction to Mathematical Logic Proof system Axiom Tableaux Resolution Two Components Syntax Semantics Algorithmic approach Yi Li (Fudan University) Discrete Mathematics March 13, 2012 8 / 20

Order Definition(Partial order A partial order is a set S with a binary relation on S, which is transitive and irreflexive Definition(Linear order) a partial order is a linear order. if it satisfies the trichotomy law:a<y or I=y or y<a. Definition(Well ordering) A linear order is well ordered if every nonempty set A of s has a least element
Order Definition (Partial order) A partial order is a set S with a binary relation < on S, which is transitive and irreflexive. Definition (Linear order) A partial order < is a linear order, if it satisfies the trichotomy law: x < y or x = y or y < x. Definition (Well ordering) A linear order is well ordered if every nonempty set A of S has a least element. Yi Li (Fudan University) Discrete Mathematics March 13, 2012 9 / 20

Countable and infinite Definition( Countable) A set A is countable if there is a one-to-one mapping from a to m Definition(Finite A set A is finite if there is a one-to-one mapping from A to{0,1,…,n-1} for some n∈M Definition o If a is not countable. it is uncountable o If a is not finite, it is infinite
Countable and Infinite Definition (Countable) A set A is countable if there is a one-to-one mapping from A to N . Definition (Finite) A set A is finite if there is a one-to-one mapping from A to {0, 1, . . . , n − 1} for some n ∈ N . Definition 1 If A is not countable, it is uncountable. 2 If A is not finite, it is infinite. Yi Li (Fudan University) Discrete Mathematics March 13, 2012 10 / 20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_21/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_20/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_19/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_18/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_17/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_16/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_15/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_14/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_13/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf