复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence

Discrete mathematics Yi li Software school Fudan University May29,2012
Discrete Mathematics Yi Li Software School Fudan University May 29, 2012 Yi Li (Fudan University) Discrete Mathematics May 29, 2012 1 / 27

Review o Predicates and quantifiers Language: Terms and Formulas o Formation Trees and structures
Review Predicates and Quantifiers Language: Terms and Formulas Formation Trees and Structures Yi Li (Fudan University) Discrete Mathematics May 29, 2012 2 / 27

utline o Structure Interpretation Truth o Satisfiable o Consequence
Outline Structure Interpretation Truth Satisfiable Consequence Yi Li (Fudan University) Discrete Mathematics May 29, 2012 3 / 27

Semantics: meaning and Truth What is language? o What is the meaning of language?
Semantics: meaning and Truth What is language? What is the meaning of language? Yi Li (Fudan University) Discrete Mathematics May 29, 2012 4 / 27

Language finition(Language A language L consists of the following disjoint sets of distinct primitive symbols o Variables: x, y, xo, x1,..., yo, y1, ...(an infinite set) O Constants: c, d, co, do, ...(any set of them) Connectives:∧,一,,→>,+ Quantifiers:V,彐 o Predicate symbols: P, Q, R, P1, P2 o Function symbols: f, g, h, fo, fi O Punctuation:, and),(
Language Definition (Language) A language L consists of the following disjoint sets of distinct primitive symbols: 1 Variables: x, y, x0, x1, . . . , y0, y1, . . . (an infinite set) 2 Constants: c, d, c0, d0, . . . (any set of them). 3 Connectives: ∧, ¬, ∨,→,↔ 4 Quantifiers: ∀, ∃ 5 Predicate symbols: P, Q, R, P1, P2, . . . 6 Function symbols: f , g, h, f0, f1, . . . 7 Punctuation: , and ), ( Yi Li (Fudan University) Discrete Mathematics May 29, 2012 5 / 27

languange( Cont) am e Consider the language with one predicate P(x, y)and function f(x, y). We can view them as o w with and f(x,y)=xy o Q with and f(x,y)=x:y o Z with and f(x,y)=x-y
Languange(Cont.) Example Consider the language with one predicate P(x, y) and function f (x, y). We can view them as: 1 N with ≤ and f (x, y) = x · y. 2 Q with and f (x, y) = x − y. Yi Li (Fudan University) Discrete Mathematics May 29, 2012 6 / 27

St ructure amp dle Consider this sentence Bobbys father can beat up the father of any other kid on the block Solution Let O K(x): x is a child on the block and b means Bobby o f(x): x's father, O B(,y): x can beat up y o Finally, Vx(K(x)→(-(X=b)→B(f(b),f(x)
Structure Example Consider this sentence ”Bobby’s father can beat up the father of any other kid on the block”. Solution Let 1 K(x): x is a child on the block and b means Bobby. 2 f (x): x’s father, 3 B(x, y): x can beat up y, 4 Finally, ∀x(K(x) → (¬(x = b) → B(f (b), f (x)))). Yi Li (Fudan University) Discrete Mathematics May 29, 2012 7 / 27

Structure( Cont Definition A structure A for a language l consists of nonempty domain A o an assignment to each n-ary predicate symbol r of L, of an actual predicate r on the n-tuples n) from A O an assignment, to each constant symbol c of L, of an element cA of A and, to each n-ary function symbol f of L o an n-ary function fa from an to A
Structure(Cont.) Definition A structure A for a language L consists of 1 a nonempty domain A, 2 an assignment, to each n-ary predicate symbol R of L, of an actual predicate R A on the n-tuples (n1, n2, . . . , an) from A, 3 an assignment, to each constant symbol c of L, of an element c A of A and, to each n-ary function symbol f of L, 4 an n-ary function f A from A n to A. Yi Li (Fudan University) Discrete Mathematics May 29, 2012 8 / 27

Structure( Cont am e Now we have three structures of language P(x, y), f(x, y) oN,≤,f4(x,y)=x:y g,,f(x,y)=x-y
Structure(Cont.) Example Now we have three structures of language P(x, y), f (x, y): 1 N , ≤, f A(x, y) = x · y. 2 Q, , f A(x, y) = x − y. Yi Li (Fudan University) Discrete Mathematics May 29, 2012 9 / 27

Interpretation Definition(The interpretation of ground terms) o Each constant term c names the element c O if the terms ti,..., tn of l name the elements ti,..., t of A and f is an n-ary function symbol of L, then the term f(,.., t2) names the element f(th,,tn)4=f(t1,……,th)ofA
Interpretation Definition (The interpretation of ground terms) 1 Each constant term c names the element c A. 2 if the terms t1, . . . ,tn of L name the elements t A 1 , . . . ,t A 2 of A and f is an n-ary function symbol of L, then the term f (t1, . . . ,t2) names the element f (t1, . . . ,tn) A = f A(t A 1 , . . . ,t A n ) of A. Yi Li (Fudan University) Discrete Mathematics May 29, 2012 10 / 27
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_10 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_11 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_12 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_13 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_15 Application and Limitations.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)绪论、第一章 集合的基本概念.pdf
- 复旦大学:《离散数学》课程教学讲义(集合论)第二章 关系(主讲:吴永辉).pdf