复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications

Discrete mathematics Yi li Software sc Fudan unive April 24, 2012
Discrete Mathematics Yi Li Software School Fudan University April 24, 2012 Yi Li (Fudan University) Discrete Mathematics April 24, 2012 1 / 25

Review Soundness o Completeness
Review Soundness Completeness Yi Li (Fudan University) Discrete Mathematics April 24, 2012 2 / 25

utline o Deduction from premises o Compactness Applications
Outline Deduction from premises Compactness Applications Yi Li (Fudan University) Discrete Mathematics April 24, 2012 3 / 25

C onsequence Definition Let 2 be a(possibly infinite)set of propositions. We say that o is a consequence of 2(and write as 2h o) if, for any valuation v (D()= T for allT∈∑)→()=T
Consequence Definition Let Σ be a (possibly infinite) set of propositions. We say that σ is a consequence of Σ (and write as Σ |= σ) if, for any valuation V, (V(τ ) = T for all τ ∈ Σ) ⇒ V(σ) = T. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 4 / 25

C onsequence am dle oLet∑={A,=AVB}, we have∑hB oLet={A,A→B}, we have∑hB oLet∑={-A}, we have∑(A→B)
Consequence Example 1 Let Σ = {A, ¬A ∨ B}, we have Σ |= B. 2 Let Σ = {A, A → B}, we have Σ |= B. 3 Let Σ = {¬A}, we have Σ |= (A → B). Yi Li (Fudan University) Discrete Mathematics April 24, 2012 5 / 25

Deductions from premises How to construct CST from premises Definition(Tableaux from premises) Let 2 be(possibly infinite)set of propositions. We define the finite tableaux with premises from 2 by induction: | t is a finite tableau from∑anda∈∑, then the tableau formed by putting Ta at the end of every noncontradictory path not containing it is also a finite tableau from∑
Deductions from Premises How to construct CST from premises? Definition (Tableaux from premises) Let Σ be (possibly infinite) set of propositions. We define the finite tableaux with premises from Σ by induction: 2 If τ is a finite tableau from Σ and α ∈ Σ, then the tableau formed by putting Tα at the end of every noncontradictory path not containing it is also a finite tableau from Σ. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 6 / 25

Tableau proof Definition a tableau proof of a proposition a from 2 is a tableau from 2 with root entry Fa that is contradictory, that is one in which every path is contradictory. If there is such a proof we say that a is provable from 2 and write it as ∑卜a
Tableau proof Definition A tableau proof of a proposition α from Σ is a tableau from Σ with root entry Fα that is contradictory, that is, one in which every path is contradictory. If there is such a proof we say that α is provable from Σ and write it as Σ ` α. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 7 / 25

Property of CST Theorem Every CsT from a set of premises is finished
Property of CST Theorem Every CST from a set of premises is finished. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 8 / 25

Soundness of deductions from premises 「 Theorem If there is a tableau proof of a from a set of premises 2 then a is a consequence of∑,ie.∑}a→∑ha
Soundness of deductions from premises Theorem If there is a tableau proof of α from a set of premises Σ, then α is a consequence of Σ, i.e. Σ ` α ⇒ Σ α. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 9 / 25

Completeness of deduction from premises Theorem If a is consequence of a set 2 of premises, then there is a tableau deduction of a from∑,ie.,∑a→∑卜a
Completeness of deduction from premises Theorem If α is consequence of a set Σ of premises, then there is a tableau deduction of α from Σ, i.e., Σ α ⇒ Σ ` α. Yi Li (Fudan University) Discrete Mathematics April 24, 2012 10 / 25
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_21/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_20/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_19/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_10 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_11 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_12 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_13 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_14 Soundness and Completeness of Predicate Logic.pdf