复旦大学:《离散数学 Discrete Mathematics》英文讲稿_02 Special Lattices Boolean Algebra

Discrete mathematics Yi Li Software school Fudan universit March 6. 2012
Discrete Mathematics Yi Li Software School Fudan University March 6, 2012 Yi Li (Fudan University) Discrete Mathematics March 6, 2012 1 / 1

Review o Review of a partial order set o Review of abstract algebra o Lattice and Sublattice
Review Review of a partial order set Review of abstract algebra Lattice and Sublattice Yi Li (Fudan University) Discrete Mathematics March 6, 2012 2 / 1

utline Special Lattices o Boolean Algebra
Outline Special Lattices Boolean Algebra Yi Li (Fudan University) Discrete Mathematics March 6, 2012 3 / 1

Idea Definition(Ri Given a ring R and a nonempty set I CR. I is an ideal of R if it subjects to For any a,b∈I,a-b∈1. For any a∈I,r∈R,ar,Ta∈I. Definition( Lattice) A subset of a lattice is an ideal if it is a sublattice of L and x∈ I and a∈ L imply that a na∈I A proper ideal I of L is prime if a,b∈ L and a∩b∈I imply that a∈Iorb∈r
Ideal Definition (Ring) Given a ring R and a nonempty set I ⊆ R. I is an ideal of R if it subjects to: 1 For any a, b ∈ I, a − b ∈ I. 2 For any a ∈ I, r ∈ R, ar, ra ∈ I. Definition (Lattice) A subset I of a lattice L is an ideal if it is a sublattice of L and x ∈ I and a ∈ L imply that x ∩ a ∈ I. A proper ideal I of L is prime if a, b ∈ L and a ∩ b ∈ I imply that a ∈ I or b ∈ I. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 4 / 1

Idea am dle Given a lattice and sublattice p and i as shown in the following Figure, where P=a,0 and I=0f Figure: ldeal and prime ideal
Ideal Example Given a lattice and sublattice P and I as shown in the following Figure, where P = {a, 0} and I = {0}. 0 a b 1 I P Figure: Ideal and prime ideal Yi Li (Fudan University) Discrete Mathematics March 6, 2012 5 / 1

Idea Definition o The ideal generated by a subset H will be denoted by id(H), and if H=af, we write id(a) for id(a) we shall call id(a)a principal ideal. o For an order P, a subset A C P is called down-set fx∈ A and y< c imply that y∈A
Ideal Definition 1 The ideal generated by a subset H will be denoted by id(H), and if H = {a}, we write id(a) for id(a); we shall call id(a) a principal ideal. 2 For an order P, a subset A ⊆ P is called down-set if x ∈ A and y ≤ x imply that y ∈ A. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 6 / 1

Idea 「The eorem Let l be a lattice and let H and i be nonempty subsets o I is an ideal if and only if the following two conditions hold oa,b∈ I implies that a∪b∈I, o I is a down-set oI=id(h) if and only if I={x|x≤hoU…Uhn-1 for some n>1and he han-1∈H} O For a∈L,id(a)={x∩ax∈L}
Ideal Theorem Let L be a lattice and let H and I be nonempty subsets of L. 1 I is an ideal if and only if the following two conditions hold: 1 a, b ∈ I implies that a ∪ b ∈ I, 2 I is a down-set. 2 I = id(H) if and only if I = {x|x ≤ h0 ∪ · · · ∪ hn−1 for some n ≥ 1 and h0, . . . , hn−1 ∈ H}. 3 For a ∈ L, id(a) = {x ∩ a|x ∈ L}. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 7 / 1

S pecial Lattice Definition a lattice L is complete if any finte or infinite) subset A=aili e I has a least upper bound Uierai and a greatest lower bound∩∈ra Definition A lattice L is bounded if it has a greatest element 1 and a least element 0 Theorem Finite lattice L=al,., an is bounded
Special Lattice Definition A lattice L is complete if any(finte or infinite) subset A = {ai |i ∈ I} has a least upper bound ∪i∈Iai and a greatest lower bound ∩i∈Iai . Definition A lattice L is bounded if it has a greatest element 1 and a least element 0. Theorem Finite lattice L = {a1, . . . , an} is bounded. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 8 / 1

S pecial Lattice Definition A lattice L with 0 and 1 is said to be complemented if for every a e L there exists an a' such that aua=1 anda∩a′=0 Sometimes, we can relax the restrictions by defining complement of b relative to a as b∪b=a,b∩b1=0if 6, b1 s a Xam e is complemented for any nonempty set s
Special Lattice Definition A lattice L with 0 and 1 is said to be complemented if for every a ∈ L there exists an a 0 such that a ∪ a 0 = 1 and a ∩ a 0 = 0. Sometimes, we can relax the restrictions by defining complement of b relative to a as b ∪ b1 = a, b ∩ b1 = 0 if b, b1 ≤ a. Example is complemented for any nonempty set S. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 9 / 1

S pecial Lattice am dle Given a posetdescribed in following figure Figure: Complemented Lattice
Special Lattice Example Given a poset described in following figure. a b c 1 0 Figure: Complemented Lattice. Yi Li (Fudan University) Discrete Mathematics March 6, 2012 10 / 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_overview.pdf
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_29/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_28/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_27/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_26/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_25/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_24/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_23/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_22/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_21/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_20/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_19/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_18/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_17/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_16/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_15/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_14/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_13/29.ppt
- 复旦大学:《离散数学——代数结构与数理逻辑》PPT课件_12/29.ppt
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_03.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_07 Tableau proof system.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_10 Application of compactness theorem Limits of propositional logic Predicates and quantifiers.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲稿_15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_01 Lattice(I).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_02 Lattice(II).pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_03 Introduction to Logic.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学 Discrete Mathematics》英文讲义_07 Tableau Proof System.pdf